Economic Growth

Lecture 8: Overlapping generations

Chris Edmond

MIT 14.452

Fall 2021

Overlapping Generations

- Neoclassical growth model has all households present in all of infinitely-many periods.
- Overlapping generations model features perpetual arrival of *new* generations not present in earlier periods.

[Allais (1947), Samuelson (1958), version here follows Diamond (1965)]

- Cross-sectional heterogeneity in age plays a fundamental role.
- Decisions made by older generations determine the opportunities facing younger generations.

Overlapping Generations

- Influential framework, for two distinct reasons
 - (i) *applied influence*: especially when lifecycle or demographics are crucial e.g., pensions/social security, health, fertility, etc
 - (ii) theoretical influence: the 'double infinity' of commodities and agents leads to the possibility of Pareto inefficient competitive equilibria, i.e., first welfare theorem may not hold

equilibria may be dynamically inefficient, capital overaccumulation

• We will begin with a simple illustration of the 'double infinity' issue in an exchange economy, then spend most of the lecture developing an OLG counterpart to the neoclassical growth model.

Outline

1. Notes on the economics of infinity

- 2. Benchmark two-period OLG growth model
 - Setup Savings function Equilibrium uniqueness Examples
- 3. The possibility of dynamic inefficiency
- 4. Social security and capital accumulation

Setup

- Example follows Shell (1971).
- Exchange economy with infinitely-many dated commodities t = 0, 1, 2, ...
- Infinitely-many two-period lived individuals with linear utility

$$U_t = c_t^1 + c_{t+1}^2$$

where c_t^a denotes consumption on date t of individual of age a = 1, 2.

• Individual t endowed with 1 unit of date-t commodity, budget set

$$p_t c_t^1 + p_{t+1} c_{t+1}^2 \le p_t$$

- Allocation $\boldsymbol{c} = \{\boldsymbol{c}_t\}$, individual allocation \boldsymbol{c}_t with elements $c_t^1, c_{t+1}^2 \ge 0$.
- Prices \boldsymbol{p} with typical element $p_t \ge 0$. Let $p_0 = 1$ be the numeraire.

No Trade is a Competitive Equilibrium

- A competitive equilibrium is a feasible allocation \boldsymbol{c} and prices \boldsymbol{p} such that
 - (i) taking p as given, c_t is optimal for each individual t

(ii) markets clear

$$c_t^1 + c_t^2 = 1$$

- PROPOSITION. There is a competitive equilibrium with no trade, $c_t^1 = 1$ for all t, supported by prices $p_t = 1$ for all t.
- PROOF. At $p_t = 1$, the budget set of individual t is

$$c_t^1 + c_{t+1}^2 \le 1$$

Since $U_t = c_t^1 + c_{t+1}^2$, consumption $c_t^1 = 1$ is optimal for individual t. Hence $p_t = 1$ and $c_t^1 = 1$ for all t is a competitive equilibrium.

• REMARK. Here every individual consumes when young.

No Trade is Not Pareto Efficient

- PROPOSITION. No trade competitive equilibrium is not Pareto efficient.
- PROOF (Sketch). Consider the following alternative
 - individual t = 0 consumes own endowment when young and individual t = 1 endowment when old
 - individual t = 1 consumes individual t = 2 endowment when old
 - individual t = 2 consumes individual t = 3 endowment when old

- individual t consumes individual t + 1 endowment when old

- Individual t = 0 is strictly better off and no other individual is worse off.
- In other words, the first welfare theorem does not hold.

Discussion

- At these prices, market value of the aggregate endowment is infinite.
- Let y denote aggregate endowment of dated commodities.
- Since each individual t has one unit of date-t commodity, the aggregate endowment is the infinite stream

$$\boldsymbol{y} = (1, 1, 1, \dots)$$

• At these prices, the market value of the aggregate endowment is

$$\boldsymbol{p} \cdot \boldsymbol{y} = \sum_{t=0}^{\infty} p_t y_t = \sum_{t=0}^{\infty} 1 = +\infty$$

- So in attempting to apply the first welfare theorem we would not be able to conclude that Pareto dominant allocations must be budget infeasible [see Lecture 7 pages 14-15].
- Pareto inefficiency illustrated here gives rise to possibility of dynamic inefficiency in OLG growth model.

Second Welfare Theorem

- Second welfare theorem *does not* require $p \cdot y < \infty$.
- Requires convex preferences and the cheaper point property, satisfied here.
- Can *implement* allocation where individual t = 0 consumes when young and old and every other individual consumes only when old.
- For each t = 1, 2, ... tax individual t one unit of date-t commodity (when they are young) and give that unit to individual t 1 (when they are old).
- This is a within-period tax/transfer between young and old at date t.
- CHECK. Allocation $c_0 = (c_0^1, c_1^2) = (1, 1)$ and $c_t = (c_t^1, c_{t+1}^2) = (0, 1)$ for all $t = 1, 2, \ldots$ with prices $p_t = 1$ for all t is a competitive equilibrium.
- Example here is very special, but we will see similar mechanism can work more generally in OLG economies.

Outline

1. Notes on the economics of infinity

2. Benchmark two-period OLG growth model

Setup Savings function Equilibrium uniqueness Examples

- 3. The possibility of dynamic inefficiency
- 4. Social security and capital accumulation

Outline

1. Notes on the economics of infinity

2. Benchmark two-period OLG growth model Setup

Savings function Equilibrium uniqueness Examples

- 3. The possibility of dynamic inefficiency
- 4. Social security and capital accumulation

Benchmark Two-Period OLG Model

- Discrete time $t = 0, 1, 2, \ldots$
- Individual born at t lives t and t+1.
- Separable utility

$$U_t = u(c_t^1) + \beta u(c_{t+1}^2), \qquad 0 < \beta < 1$$

where c_t^a denotes consumption on date t of individual of age a = 1, 2.

- To streamline exposition, assume u'(c) > 0, u''(c) < 0 and $u'(0) = +\infty$.
- Individuals inelastically supply one unit of labor when young.
- But need to save for when they are old.

Individual Consumption/Savings Problem

• Individual born at date t chooses consumption and savings s_t to maximize

$$U_t = u(c_t^1) + \beta u(c_{t+1}^2), \qquad 0 < \beta < 1$$

subject to

$$c_t^1 + s_t \le w_t$$

and

$$c_{t+1}^2 \le R_{t+1} s_t$$

taking wage rate w_t and gross return on saving R_{t+1} as given.

• The first order condition for s_t is a consumption Euler equation

$$u'(c_t^1) = \beta u'(c_{t+1}^2)R_{t+1}$$

• This pins down saving as a function of w and R

$$u'(w-s) = \beta u'(Rs)R \qquad \Rightarrow \qquad s(w,R)$$

Individual Consumption/Savings Problem

Demographics and Technology

• Let L_t denote mass of young individuals at date t, growing at rate n

$$L_t = (1+n)^t L_0, \qquad n > 0$$

- So in period t the population consists of L_t young and L_{t-1} old.
- Also a mass of 'initial old' at date t = 0, endowed with initial assets.
- Aggregate production function

$$Y_t = F(K_t, L_t)$$

with standard properties, and normalizing A = 1.

• To streamline exposition, assume full depreciation, $\delta = 1$, so $K_{t+1} = I_t$.

Factor Prices

- Let $y_t = Y_t/L_t$ denote output per worker, $k_t = K_t/L_t$ etc.
- Intensive form of the production function

$$y_t = f(k_t)$$

• With competitive firms and and competitive factor markets

 $R_t = f'(k_t)$ $w_t = f(k_t) - f'(k_t)k_t$

Saving and Investment

- Let S_t denote aggregate savings.
- Since there are L_t workers each with savings s_t this is

$$S_t = s_t L_t$$

• Since the economy is closed and there are no government purchases

$$S_t = I_t$$

• Hence

$$K_{t+1} = I_t = S_t = s_t L_t = s(w_t, R_{t+1})L_t$$

Goods Market Clearing

- Check that this implies goods market clearing.
- Use of goods by the young at date t

$$L_t(c_t^1 + s_t) = L_t w_t = L_t(f(k_t) - f'(k_t)k_t) = Y_t - f'(k_t)K_t$$

• Use of goods by the old at date t

$$L_{t-1}c_t^2 = L_{t-1}R_t s_{t-1} = R_t K_t = f'(k_t)K_t$$

• Summing these gives the goods market clearing condition

$$L_t(c_t^1 + s_t) + L_{t-1}c_t^2 = Y_t$$

Key Equilibrium Condition

- Recall $K_{t+1} = s(w_t, R_{t+1})L_t$.
- Using our expressions for factor prices we get, in per worker terms

$$(1+n)k_{t+1} = s\left(\underbrace{f(k_t) - f'(k_t)k_t}_{=w_t}, \underbrace{f'(k_{t+1})}_{=R_{t+1}}\right)$$

- Given k_t , look for k_{t+1} that satisfies this equilibrium condition.
- May not be a unique solution to this problem, depends on shape of saving function and production function.
- What can we say about the shape of the saving function s(w, R)?

Outline

1. Notes on the economics of infinity

2. Benchmark two-period OLG growth model

Setup Savings function Equilibrium uniqueness Examples

- 3. The possibility of dynamic inefficiency
- 4. Social security and capital accumulation

Saving Function s(w, R)

• Implicitly determined by

$$u'(w-s) = \beta Ru'(Rs)$$

• Savings are *strictly increasing in wage w*, can show

$$s_w(w,R) = \frac{1}{1 + \frac{\mathcal{E}(w-s)}{\mathcal{E}(Rs)} \left(\frac{w-s}{s}\right)} \in (0,1)$$

where $\mathcal{E}(x) > 0$ is the intertemporal elasticity of substitution at x.

• But savings may be increasing or decreasing in return R, can show

$$s_R(w,R) = \frac{\mathcal{E}(Rs) - 1}{1 + \frac{\mathcal{E}(w-s)}{\mathcal{E}(Rs)} \left(\frac{w-s}{s}\right)} \frac{s(w,R)}{R}$$

the sign of which depends on the magnitude of $\mathcal{E}(Rs)$.

Saving Function s(w, R)

- Change in R has both a substitution effect and an income effect on savings
 - increase in R increases the relative price of consumption when young compared to consumption when old and induces substitution away from consumption when young, i.e., increasing saving
 - increase in R increases amount of income when old per unit saving, decreasing the need to save for old age
- Substitution effect dominates if and only if $\mathcal{E}(Rs) > 1$.

Outline

1. Notes on the economics of infinity

2. Benchmark two-period OLG growth model

Setup Savings function Equilibrium uniqueness Examples

- 3. The possibility of dynamic inefficiency
- 4. Social security and capital accumulation

Equilibrium Uniqueness

• Write key equilibrium condition

$$(1+n)k_{t+1} = s(w(k_t), f'(k_{t+1}))$$

where the wage

$$w(k_t) \equiv f(k_t) - f'(k_t)k_t$$

is strictly increasing in k_t , so can treat w_t as stand in for k_t .

- For given $w_t > 0$, is there a unique k_{t+1} that satisfies this equation?
- If there is a unique solution, the dynamics are *determinate* and we can write $k_{t+1} = g(k_t)$ and proceed to study the properties of g(k) to characterize those dynamics.
- If there is a multiplicity of solutions, the dynamics are *indeterminate* and some further equilibrium selection device is required (e.g., 'sunspots').

Equilibrium Uniqueness

Case on the left has multiple equilibria, for some k_t there are multiple solutions k_{t+1} to the key equilibrium condition $(1+n)k_{t+1} = s(w(k_t), f'(k_{t+1}))$. Case on the right has a unique equilibrium, for any fixed k_t there is a unique $k_{t+1} = g(k_t)$ solving the equilibrium condition.

Sufficient Condition for Equilibrium Uniqueness

• Fix w > 0 and consider any k such that

$$(1+n)k = s(w, f'(k))$$

• A sufficient condition for k to be unique is that

$$s_R(w, f'(k)) > \frac{1+n}{f''(k)}$$

- For example, if $s_R(w, R) > 0$ this condition is satisfied.
- Intuitively, this condition requires that the *income effects* from a change in R are 'not too strong'.
- But difficult to check in practice, because w and k are endogenous.
- To make further progress, let's consider some specific functional forms.

Outline

1. Notes on the economics of infinity

2. Benchmark two-period OLG growth model

Setup Savings function Equilibrium uniqueness Examples

3. The possibility of dynamic inefficiency

4. Social security and capital accumulation

Specific Functional Forms

• Suppose the period utility function is

$$u(c) = \frac{c^{1-\theta} - 1}{1-\theta}, \qquad \theta > 0$$

with constant intertemporal elasticity of substitution $1/\theta$.

• Suppose the production function is

$$F(K,L) = \left(\alpha K^{\frac{\sigma-1}{\sigma}} + (1-\alpha)L^{\frac{\sigma-1}{\sigma}}\right)^{\frac{\sigma}{\sigma-1}}, \qquad 0 < \alpha < 1, \qquad \sigma > 0$$

with constant elasticity of substitution σ . For future reference

$$f(k) = \left(\alpha k^{\frac{\sigma-1}{\sigma}} + (1-\alpha)\right)^{\frac{\sigma}{\sigma-1}}$$

with

$$f'(k) = \alpha \left(\frac{f(k)}{k}\right)^{\frac{1}{\sigma}}$$

Individual Consumption/Savings Problem

• With this utility function, the consumption Euler equation is

$$(w-s)^{-\theta} = \beta R(Rs)^{-\theta}$$

which solves for

$$s(w,R) = \frac{\beta^{\frac{1}{\theta}} R^{\frac{1-\theta}{\theta}}}{1+\beta^{\frac{1}{\theta}} R^{\frac{1-\theta}{\theta}}} w$$

• Notice this has the anticipated properties

 $s_w(w, R) \in (0, 1),$ and $s_R(w, R) > 0 \quad \Leftrightarrow \quad \theta < 1$

• Can then back out

$$c^{1}(w, R) = w - s(w, R) = \frac{1}{1 + \beta^{\frac{1}{\theta}} R^{\frac{1-\theta}{\theta}}} w$$

and

$$c^{2}(w,R) = Rs(w,R) = \frac{\beta^{\frac{1}{\theta}} R^{\frac{1-\theta}{\theta}}}{1+\beta^{\frac{1}{\theta}} R^{\frac{1-\theta}{\theta}}} Rw$$

Individual Consumption/Savings Problem [$\theta = 1$]

Back to Equilibrium Uniqueness

• Fix w > 0 and consider any k such that

$$(1+n)k = s(w, f'(k))$$

• With these constant elasticity functional forms, this can be written

$$k + k\beta^{-\frac{1}{\theta}}f'(k)^{\frac{\theta-1}{\theta}} = \frac{w}{1+n}$$

where

$$f'(k) = \alpha \left(\frac{f(k)}{k}\right)^{\frac{1}{\sigma}}$$

• Can then show that a *sufficient condition for uniqueness* is

$$\sigma + \frac{1}{\theta} \ge 1$$

- REMARKS. The sum of elasticities needs to be sufficiently large.
 - if factors are relatively substitutable, $\sigma \geq 1$, satisfied for any $\theta > 0$
 - if factors are relatively complementary, $\sigma < 1,$ need sufficiently high intertemporal elasticity $1/\theta$

Equilibrium Dynamics: Overview

• ASSUMPTION. Suppose the sufficient condition for uniqueness is satisfied

$$\sigma + \frac{1}{\theta} \ge 1$$

• Under this assumption, there is a unique $k_{t+1} = g(k_t)$ solving

$$(1+n)k_{t+1} = s(w(k_t), f'(k_{t+1}))$$

- Moreover dynamics are *monotone*, the function g(k) is increasing in k.
- The function may have *multiple steady states* k^* .
- But the dynamics are *bounded*, cannot generate unbounded growth even with 'Ak' production function.
- REMARK. Boundedness results from two key properties

$$(1+n)k_{t+1} = s(w(k_t), f'(k_{t+1})) \le w(k_t), \quad \text{and} \quad \lim_{k \to \infty} \frac{w(k)}{k} = 0$$

Example: Log / Cobb-Douglas

- The combination of log utility $u(c) = \log c$ (i.e., $\theta = 1$) and Cobb-Douglas production $f(k) = Ak^{\alpha}$ (i.e., $\sigma = 1$) is particularly straightforward.
- Income and substitution effects of changes in R on savings cancel leaving

$$s(w, R) = \frac{\beta}{1+\beta} w$$
, independent of R

• The wage rate is

$$w(k) = f(k) - f'(k)k = (1 - \alpha)Ak^{\alpha} = (1 - \alpha)f(k)$$

• So the equilibrium condition simplifies to

$$(1+n)k_{t+1} = \frac{\beta}{1+\beta}(1-\alpha)Ak_t^{\alpha}$$

Example: Log / Cobb-Douglas

• Writing this

$$k_{t+1} = g(k_t) \equiv \frac{(1-\alpha)A\beta}{(1+n)(1+\beta)} k_t^{\alpha}$$

we see that there is a unique non-trivial steady state $k^* > 0$ satisfying $k^* = g(k^*)$ which evaluates to

$$k^* = \left(\frac{(1-\alpha)A\beta}{(1+n)(1+\beta)}\right)^{\frac{1}{1-\alpha}}$$

- Qualitatively, the dynamics here are similar to the Solow model.
- But note if $\alpha \to 1$ so that f(k) = Ak we would have $k^* \to 0$ for any A > 0.
- Constant saving rate out of *wage income* is not the same as a constant saving rate out of *total income*.

Example: Log / Cobb-Douglas

Example: Log / CES

• Suppose log utility $u(c) = \log c$ (i.e., $\theta = 1$) with CES production function

$$f(k) = \left(\alpha k^{\frac{\sigma-1}{\sigma}} + (1-\alpha)\right)^{\frac{\sigma}{\sigma-1}}, \qquad \sigma > 0$$

for which the wage is

$$w(k) = (1 - \alpha) \left(\alpha k^{\frac{\sigma - 1}{\sigma}} + (1 - \alpha) \right)^{\frac{1}{\sigma - 1}} = (1 - \alpha) f(k)^{\frac{1}{\sigma}}$$

• So in this case

$$k_{t+1} = g(k_t) \equiv \frac{(1-\alpha)\beta}{(1+n)(1+\beta)} f(k_t)^{\frac{1}{\sigma}}$$

- Production function f(k) is concave, but what about g(k)?
- Differentiating twice and collecting terms we get

$$\frac{g''(k)}{g(k)} = \frac{1}{\sigma} \left\{ \frac{f''(k)}{f(k)} + \left(\frac{1}{\sigma} - 1\right) \left(\frac{f'(k)}{f(k)}\right)^2 \right\}$$

Example: Log / CES

- From this we have two cases to consider.
 - (i) factors are relatively substitutable, $\sigma \ge 1$, implies g''(k) < 0 for all k and there is a unique non-trivial steady state $k^* > 0$.
 - (ii) factors are relatively complementary, $\sigma < 1$, implies g''(k) > 0 for $k < k_{CRIT}$ and g''(k) < 0 for $k > k_{CRIT}$ where the critical value k_{CRIT} solves g''(k) = 0and works out to be

$$k_{\text{CRIT}} = \left(\frac{(1-\alpha)}{\alpha(1-\sigma)}\right)^{\frac{\sigma}{\sigma-1}}, \qquad \sigma < 1$$

in this case, there are either

(a) two non-trivial steady states, of which only the larger is stable, or

(b) zero non-trivial steady states, if g(k) < k for all k

• REMARK. In case (ii) there is an endogenous poverty trap in the sense that if $k_t < k_{\text{CRIT}}$ then $k_t \to 0^+$.

Example: Log / CES [case (i), $\sigma > 1$]

Example: Log / CES [case (ii.a), $\sigma < 1$]

Example: Log / CES [case (ii.b), $\sigma < 1$]

capital per worker, k_t

Outline

1. Notes on the economics of infinity

- 2. Benchmark two-period OLG growth model
 - Setup Savings function Equilibrium uniqueness Examples

3. The possibility of dynamic inefficiency

4. Social security and capital accumulation

OLG Planning Problem

• Consider planner that seeks to maximize

$$W = \sum_{t} \omega_t U_t = \sum_{t} \omega_t \left[u(c_t^1) + \beta u(c_{t+1}^2) \right]$$

subject to sequence of aggregate resource constraints

$$L_t c_t^1 + L_{t-1} c_t^2 + K_{t+1} \le F(K_t, L_t)$$

• In per worker terms, the resource constraint is

$$c_t^1 + \frac{1}{1+n}c_t^2 + (1+n)k_{t+1} \le f(k_t)$$

• REMARK. Planning weights $\boldsymbol{\omega}$ need only ensure objective is well-defined, do not need $\omega_t = \beta^t$ or indeed need strictly geometric discounting at all.

OLG Planning Problem

• Lagrangian with multiplier $\lambda_t \ge 0$ for each resource constraint

$$\mathcal{L} = \sum_{t=0}^{\infty} \omega_t \left[u(c_t^1) + \beta u(c_{t+1}^2) \right] + \sum_{t=0}^{\infty} \lambda_t \left[f(k_t) - c_t^1 - \frac{1}{1+n} c_t^2 - (1+n)k_{t+1} \right]$$

• Key first order conditions, hold at each date

$$c_t^1: \qquad \qquad \omega_t u'(c_t^1) - \lambda_t = 0$$

$$c_t^2:$$
 $\omega_{t-1}\beta u'(c_t^2) - \lambda_t \frac{1}{1+n} = 0$

$$k_{t+1}: \qquad -\lambda_t(1+n) + \lambda_{t+1}f'(k_{t+1}) = 0$$

$$\lambda_t$$
: $f(k_t) - c_t^1 - \frac{1}{1+n}c_t^2 - (1+n)k_{t+1} = 0$

Intertemporal Consumption Allocation

- Consider intertemporal consumption for individual born at date t.
- First order condition for consumption c_t^1 when they are young

$$\lambda_t = \omega_t u'(c_t^1)$$

• First order condition for consumption c_{t+1}^2 when they are old

$$\lambda_{t+1} = \omega_t \beta u'(c_{t+1}^2)(1+n)$$

• Then using the first order condition for capital accumulation

$$\lambda_t(1+n) = \lambda_{t+1} f'(k_{t+1})$$

we see that the planning weights ω_t and 1 + n factors cancel, giving usual

$$u'(c_t^1) = \beta u'(c_{t+1}^2) f'(k_{t+1})$$

just as they would choose for themselves.

Intratemporal Allocation Between Young & Old

- Now consider intratemporal allocation between young and old at date t.
- Comparing the first order conditions for c_t^1 and c_t^2 we get

$$\omega_t u'(c_t^1) = \omega_{t-1} \beta u'(c_t^2)(1+n)$$

- This condition is static up to the *exogenous* planning weights ω_t/ω_{t-1} .
- EXAMPLE. Suppose the planning weights are $\omega_t = \hat{\beta}^t$ for some discount factor $\hat{\beta}$ not necessarily equal to β . Then the planner would set

$$\frac{u'(c_t^2)}{u'(c_t^1)} = (1+n)\frac{\hat{\beta}}{\beta}$$

so that the planner trades off consumption for the old vs. consumption for the young at an effective relative price of $(1+n)\hat{\beta}/\beta$.

Discussion

- Conditional on $R_{t+1} = f'(k_{t+1})$, the planner allocates individual lifetime consumption exactly as the individuals would choose for themselves.
- This is because there is no 'market failure' for the planner to correct, conditional on $R_{t+1} = f'(k_{t+1})$.
- Note this is independent of the planning weights ω_t . Instead, where the planning weights matter is in allocating resources between young and old within a given period.
- So key question becomes, how does planner's k_{t+1} and hence planner's $R_{t+1} = f'(k_{t+1})$ compare to decentralized market outcome?
- To figure this out, we need to see how planner's k_{t+1} is determined.

Dynamical System

• System of three nonlinear difference equations in c_t^1, c_t^2 and k_{t+1}

$$u'(c_t^1) = \beta u'(c_{t+1}^2) f'(k_{t+1})$$

and

$$c_t^1 + \frac{1}{1+n}c_t^2 + k_{t+1} = f(k_t)$$

and

$$\omega_t u'(c_t^1) = \omega_{t-1} \beta u'(c_t^2)(1+n)$$

taking as given the planning weights ω_t/ω_{t-1} which drive any time-dependence in the allocation between c_t^1 and c_t^2 .

• ASSUMPTION. Suppose planning weights are asymptotically geometric

$$\lim_{t \to \infty} \frac{\omega_t}{\omega_{t-1}} = \hat{\beta} \in (0, 1)$$

for some $\hat{\beta}$ not necessarily equal to β .

Steady State

- Steady state c^{1*} , c^{2*} and k^* .
- Would ordinarily start with Euler equation

$$u'(c_t^1) = \beta u'(c_{t+1}^2) f'(k_{t+1})$$

- But in general $c^{1*} \neq c^{2*}$ so *cannot* use individual Euler equation to conclude planner's k^* solves $1 = \beta f'(k^*)$.
- Instead use intratemporal allocation between young and old

$$\hat{\beta}u'(c_t^1) = \beta u'(c_t^2)(1+n)$$

to write Euler equation between the young at t and the young at t + 1 as

$$u'(c_t^1) = \frac{\hat{\beta}}{1+n} u'(c_{t+1}^1) f'(k_{t+1})$$

Steady State

• So planner's steady state capital stock solves

$$\hat{\beta}f'(k^*) = 1 + n$$

- This is in general different to the decentralized market outcome.
- Given k^* , aggregate consumption per worker c^* is then given by

$$c^* \equiv c^{1*} + \frac{1}{1+n}c^{2*} = f(k^*) - (1+n)k^*$$

• We then split c^* into c^{1*} and c^{2*} using the intratemporal allocation between young and old, namely

$$\hat{\beta}u'(c^{1*}) = \beta u'(c^{2*})(1+n)$$

Golden Rule

- As in the basic Solow model, aggregate consumption per worker is 'hump-shaped' in k^* .
- In particular

$$\frac{dc^*}{dk^*} = f'(k^*) - (1+n) < 0 \qquad \Leftrightarrow \qquad k^* < k^*_{\rm GR}$$

where the golden rule level is given by

$$f'(k_{\rm GR}^*) = 1 + n$$

(Approximately the same as the planner's steady state if $\hat{\beta} \approx 1$)

- Let k_{ce}^* denote the competitive equilibrium steady state capital stock.
- If $k_{CE}^* > k_{GR}^*$ then we can increase consumption for young *and* old, thereby making both better off, by *reducing saving*, i.e., reducing capital.

Dynamic Inefficiency

- We say that the economy is *dynamically inefficient* if $k_{CE}^* > k_{GR}^*$.
- Since k_{CE}^* satisfies $f'(k_{\text{CE}}^*) = R^*$ and k_{GR}^* satisfies $f'(k_{\text{GR}}^*) = 1 + n$, equivalently an economy is dynamically inefficient if

$$r^* < n$$

where $r^* = R^* - 1$ is the net real return to capital.

• REMARK. This configuration was impossible in the counterpart neoclassical growth model, which has $r^* > \rho + n$ where $\rho = 1/\beta - 1$.

Intuition

- Young at time t face prices w_t, R_t reflecting the capital stock k_t .
- Capital stock k_t the result of previous generations savings decisions.
- In other words, previous generations' savings decisions impose a *pecuniary externality* on the current (and future) young.
- Ordinarily, pecuniary externalities do not cause an equilibrium to be Pareto inefficient, i.e., are not a source of market failure.
- But here there is a perpetual arrival of new young, n > 0, and the planner may be able to rearrange consumption over time to take advantage of these pecuniary externalities.

Alternative Intuition

- Dynamic inefficiency results from overaccumulation of capital.
- Saving results from young providing for their old age. Young will have a strong incentive to save if they have a declining lifetime labor income profile, e.g., the $(w_t, 0)$ profile here.
- But the more they young save, the lower is the return on capital.
- This creates an adverse income effect, which, if strong enough, only encourages more saving.
- If only there was another vehicle for saving which did not depress the return on physical capital!

Outline

- 1. Notes on the economics of infinity
- 2. Benchmark two-period OLG growth model
 - Setup Savings function Equilibrium uniqueness Examples
- 3. The possibility of dynamic inefficiency

4. Social security and capital accumulation

Social Security and Capital Accumulation

- Social security provides a possible solution to overaccumulation.
- We will contrast two extremes
 - (i) *fully-funded system*, young make contributions to social security system, paid back to them in old age
 - (ii) *unfunded system*, transfers from young to old, making use of perpetual arrival of new young

discourages saving, but that may be Pareto-improving

Fully-Funded System

- Government takes d_t from young workers, invested in physical capital and returned, with interest, when old.
- Taking d_t and factor prices as given, individual born at date t chooses consumption and savings s_t to maximize

$$U_t = u(c_t^1) + \beta u(c_{t+1}^2), \qquad 0 < \beta < 1$$

subject to

$$c_t^1 + s_t + d_t \le w_t$$

and

$$c_{t+1}^2 \le R_{t+1}(s_t + d_t)$$

• Capital per worker now evolves according to

$$(1+n)k_{t+1} = s_t + d_t$$

Fully-Funded System

- Previously only way to have $c_{t+1}^2 > 0$ was to have $s_t > 0$, so workers had to save themselves.
- Now young workers effectively choose $\hat{s}_t \equiv s_t + d_t$ and our previous analysis goes through [this may require $s_t < 0$ if d_t is large relative to the savings young would choose if $d_t = 0$].
- In other words, taking d_t as given young households choose savings s_t that perfectly offset d_t so that they end up with the consumption/savings profiles they would have had if $d_t = 0$.
- In this sense, a fully-funded system cannot address the overaccumulation problem, if it exists.

Unfunded System

- Government takes d_t from each of L_t young, transfers to *current old* giving them $d_t L_t / L_{t-1} = (1+n)d_t$ each.
- Taking d_t and factor prices as given, individual born at date t chooses consumption and savings s_t to maximize

$$U_t = u(c_t^1) + \beta u(c_{t+1}^2), \qquad 0 < \beta < 1$$

subject to

$$c_t^1 + s_t + \frac{d_t}{d_t} \le w_t$$

and

$$c_{t+1}^2 \le R_{t+1}s_t + (1+n)d_{t+1}$$

• Capital per worker now evolves according to

$$(1+n)k_{t+1} = s_t$$

because here d_t is a within-period transfer, not invested in capital.

Unfunded System

- Rate of return on social security payments is n, not r_{t+1} .
- Income effect of payments $(1+n)d_{t+1}$ discourages saving at the margin.
- Would be unfortunate if economy is dynamically efficient, because would decrease capital formation and decrease consumption of young and old.
- But *may* be Pareto-improving if economy is dynamically inefficient, lessens the overaccumulation problem.
- Initial old are *windfall beneficiaries*, receiving transfers from initial young never having made contributions themselves.

Summary

- OLG provides a tractable alternative to neoclassical growth model.
- In special cases, looks just like the Solow growth model. But much richer dynamics are possible, especially if income effects are strong or factors are sufficiently complementary.
- Perpetual arrival of new young creates a 'double infinity' of agents and commodities.
- Competitive equilibrium may be inefficient, even absent traditional sources of market failure.
- Economy may be dynamically inefficient, accumulating too much capital.
- But probably should not over-emphasize dynamic inefficiency. For most countries the problem seems to be too little capital not too much.

Next Class

- Endogenous growth.
- Externalities in capital accumulation.
- Variations on the Ak theme.

Homework

• Consider the two-period OLG model and suppose the utility and production functions are

$$u(c) = \frac{c^{1-\theta} - 1}{1-\theta}$$
, and $f(k) = \left(\alpha k^{\frac{\sigma-1}{\sigma}} + (1-\alpha)\right)^{\frac{\sigma}{\sigma-1}}$

• Suppose the sufficient condition for equilibrium uniqueness is satisfied

$$\sigma + \frac{1}{\theta} \ge 1$$

- Let $k_{t+1} = g(k_t)$ solve the key equilibrium condition.
- CHECK. Show that the equilibrium dynamics are montone, g'(k) > 0.
- CHECK. Show that the equilibrium dynamics are *bounded*, for any $k_0 > 0$ we have $k_t \leq \max[k_0, \bar{k}]$ for some $\bar{k} < \infty$ to be determined.