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Overlapping Generations

• Neoclassical growth model has all households present in all of
infinitely-many periods.

• Overlapping generations model features perpetual arrival of new
generations not present in earlier periods.

[Allais (1947), Samuelson (1958), version here follows Diamond (1965)]

• Cross-sectional heterogeneity in age plays a fundamental role.

• Decisions made by older generations determine the opportunities facing
younger generations.
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Overlapping Generations

• Influential framework, for two distinct reasons

(i) applied influence : especially when lifecycle or demographics are crucial
e.g., pensions/social security, health, fertility, etc

(ii) theoretical influence : the ‘double infinity’ of commodities and agents leads
to the possibility of Pareto inefficient competitive equilibria, i.e., first
welfare theorem may not hold

equilibria may be dynamically inefficient, capital overaccumulation

• We will begin with a simple illustration of the ‘double infinity’ issue in an
exchange economy, then spend most of the lecture developing an OLG
counterpart to the neoclassical growth model.
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Setup

• Example follows Shell (1971).

• Exchange economy with infinitely-many dated commodities t = 0, 1, 2, . . .

• Infinitely-many two-period lived individuals with linear utility

Ut = c1
t + c2

t+1

where ca
t denotes consumption on date t of individual of age a = 1, 2.

• Individual t endowed with 1 unit of date-t commodity, budget set

ptc
1
t + pt+1c

2
t+1  pt

• Allocation c = {ct}, individual allocation ct with elements c1
t , c

2
t+1 � 0.

• Prices p with typical element pt � 0. Let p0 = 1 be the numeraire.
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No Trade is a Competitive Equilibrium

• A competitive equilibrium is a feasible allocation c and prices p such that

(i) taking p as given, ct is optimal for each individual t

(ii) markets clear

c1t + c2t = 1

• Proposition. There is a competitive equilibrium with no trade, c1
t = 1

for all t, supported by prices pt = 1 for all t.

• Proof. At pt = 1, the budget set of individual t is

c1
t + c2

t+1  1

Since Ut = c1
t + c2

t+1, consumption c1
t = 1 is optimal for individual t.

Hence pt = 1 and c1
t = 1 for all t is a competitive equilibrium.

• Remark. Here every individual consumes when young.
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No Trade is Not Pareto Efficient

• Proposition. No trade competitive equilibrium is not Pareto efficient.

• Proof (Sketch). Consider the following alternative

– individual t = 0 consumes own endowment when young
and individual t = 1 endowment when old

– individual t = 1 consumes individual t = 2 endowment when old

– individual t = 2 consumes individual t = 3 endowment when old

...

– individual t consumes individual t+ 1 endowment when old

...

• Individual t = 0 is strictly better off and no other individual is worse off.

• In other words, the first welfare theorem does not hold.
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Discussion

• At these prices, market value of the aggregate endowment is infinite.

• Let y denote aggregate endowment of dated commodities.

• Since each individual t has one unit of date-t commodity, the aggregate
endowment is the infinite stream

y = (1, 1, 1, . . . )

• At these prices, the market value of the aggregate endowment is

p · y =
1X

t=0

ptyt =
1X

t=0

1 = +1

• So in attempting to apply the first welfare theorem we would not be able
to conclude that Pareto dominant allocations must be budget infeasible
[see Lecture 7 pages 14-15].

• Pareto inefficiency illustrated here gives rise to possibility of dynamic
inefficiency in OLG growth model.
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Second Welfare Theorem

• Second welfare theorem does not require p · y < 1.

• Requires convex preferences and the cheaper point property, satisfied here.

• Can implement allocation where individual t = 0 consumes when young
and old and every other individual consumes only when old.

• For each t = 1, 2, . . . tax individual t one unit of date-t commodity (when
they are young) and give that unit to individual t� 1 (when they are old).

• This is a within-period tax/transfer between young and old at date t.

• Check. Allocation c0 = (c1
0, c

2
1) = (1, 1) and ct = (c1

t , c
2
t+1) = (0, 1) for all

t = 1, 2, . . . with prices pt = 1 for all t is a competitive equilibrium.

• Example here is very special, but we will see similar mechanism can work
more generally in OLG economies.
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Benchmark Two-Period OLG Model

• Discrete time t = 0, 1, 2, . . .

• Individual born at t lives t and t + 1.

• Separable utility

Ut = u(c1
t ) + �u(c2

t+1), 0 < � < 1

where ca
t denotes consumption on date t of individual of age a = 1, 2.

• To streamline exposition, assume u0(c) > 0, u00(c) < 0 and u0(0) = +1.

• Individuals inelastically supply one unit of labor when young.

• But need to save for when they are old.
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Individual Consumption/Savings Problem

• Individual born at date t chooses consumption and savings st to maximize

Ut = u(c1
t ) + �u(c2

t+1), 0 < � < 1

subject to
c1
t + st  wt

and
c2
t+1  Rt+1st

taking wage rate wt and gross return on saving Rt+1 as given.

• The first order condition for st is a consumption Euler equation

u0(c1
t ) = �u0(c2

t+1)Rt+1

• This pins down saving as a function of w and R

u0(w � s) = �u0(Rs)R ) s(w, R)

10



Individual Consumption/Savings Problem
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Demographics and Technology

• Let Lt denote mass of young individuals at date t, growing at rate n

Lt = (1 + n)tL0, n > 0

• So in period t the population consists of Lt young and Lt�1 old.

• Also a mass of ‘initial old’ at date t = 0, endowed with initial assets.

• Aggregate production function

Yt = F (Kt, Lt)

with standard properties, and normalizing A = 1.

• To streamline exposition, assume full depreciation, � = 1, so Kt+1 = It.
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Factor Prices

• Let yt = Yt/Lt denote output per worker, kt = Kt/Lt etc.

• Intensive form of the production function

yt = f(kt)

• With competitive firms and and competitive factor markets

Rt = f 0(kt)

wt = f(kt) � f 0(kt)kt
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Saving and Investment

• Let St denote aggregate savings.

• Since there are Lt workers each with savings st this is

St = stLt

• Since the economy is closed and there are no government purchases

St = It

• Hence
Kt+1 = It = St = stLt = s(wt, Rt+1)Lt
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Goods Market Clearing

• Check that this implies goods market clearing.

• Use of goods by the young at date t

Lt(c
1
t + st) = Ltwt = Lt(f(kt) � f 0(kt)kt) = Yt � f 0(kt)Kt

• Use of goods by the old at date t

Lt�1c
2
t = Lt�1Rtst�1 = RtKt = f 0(kt)Kt

• Summing these gives the goods market clearing condition

Lt(c
1
t + st) + Lt�1c

2
t = Yt
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Key Equilibrium Condition

• Recall Kt+1 = s(wt, Rt+1)Lt.

• Using our expressions for factor prices we get, in per worker terms

(1 + n)kt+1 = s
⇣

f(kt) � f 0(kt)kt| {z }
=wt

, f 0(kt+1)| {z }
=Rt+1

⌘

• Given kt, look for kt+1 that satisfies this equilibrium condition.

• May not be a unique solution to this problem, depends on shape of saving
function and production function.

• What can we say about the shape of the saving function s(w, R)?
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Saving Function s(w,R)

• Implicitly determined by

u0(w � s) = �Ru0(Rs)

• Savings are strictly increasing in wage w, can show

sw(w, R) =
1

1 +
E(w � s)

E(Rs)

⇣w � s

s

⌘ 2 (0, 1)

where E(x) > 0 is the intertemporal elasticity of substitution at x.

• But savings may be increasing or decreasing in return R, can show

sR(w, R) =
E(Rs) � 1

1 +
E(w � s)

E(Rs)

⇣w � s

s

⌘
s(w, R)

R

the sign of which depends on the magnitude of E(Rs).
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Saving Function s(w,R)

• Change in R has both a substitution effect and an income effect on savings

– increase in R increases the relative price of consumption when young
compared to consumption when old and induces substitution away from
consumption when young, i.e., increasing saving

– increase in R increases amount of income when old per unit saving,
decreasing the need to save for old age

• Substitution effect dominates if and only if E(Rs) > 1.
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Equilibrium Uniqueness

• Write key equilibrium condition

(1 + n)kt+1 = s(w(kt), f
0(kt+1))

where the wage
w(kt) ⌘ f(kt) � f 0(kt)kt

is strictly increasing in kt, so can treat wt as stand in for kt.

• For given wt > 0, is there a unique kt+1 that satisfies this equation?

• If there is a unique solution, the dynamics are determinate and we can
write kt+1 = g(kt) and proceed to study the properties of g(k) to
characterize those dynamics.

• If there is a multiplicity of solutions, the dynamics are indeterminate and
some further equilibrium selection device is required (e.g., ‘sunspots ’).
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Equilibrium Uniqueness

kt

<latexit sha1_base64="AA6hgTx9BvyktV5h+aPsyC9uK/0=">AAAB9XicbVDLSsNAFJ34bOur6tLNYBEqQklcqBuh4MZlRfuANobJdNIOmUzCzI1SQ//DjQtF3Poh7lwI/o3Tx0JbD1w4nHMv997jJ4JrsO1va2FxaXllNZcvrK1vbG4Vt3caOk4VZXUai1i1fKKZ4JLVgYNgrUQxEvmCNf3wYuQ375jSPJY3MEiYG5Ge5AGnBIx0G3oZHDnD81459ODQK5bsij0GnifOlJSquYevj+tavuYVPzvdmKYRk0AF0brt2Am4GVHAqWDDQifVLCE0JD3WNlSSiGk3G189xAdG6eIgVqYk4LH6eyIjkdaDyDedEYG+nvVG4n9eO4XgzM24TFJgkk4WBanAEONRBLjLFaMgBoYQqri5FdM+UYSCCapgQnBmX54njeOKc1JxrkwaZTRBDu2hfVRGDjpFVXSJaqiOKFLoET2jF+veerJerbdJ64I1ndlFf2C9/wCDcJTC</latexit>

kt+1 = g(kt)

kt+1

kt

kt+1

<latexit sha1_base64="tF+8Tgq2RYoAltd3LQAknKHb17c=">AAACC3icbVA9SwNBEN3zM4lfUUubI0G8EAl3FmojBGwsI5oPSMKxt9lLluztHbtzSjzS2/hXbCwUsbWysxD8N24+Ck18MPB4b4aZeV7EmQLb/jYWFpeWV1ZT6cza+sbmVnZ7p6bCWBJaJSEPZcPDinImaBUYcNqIJMWBx2nd65+P/PoNlYqF4hoGEW0HuCuYzwgGLbnZnOUURaHvJlB0hmfKurX6LhQO/QNrqhUKbjZvl+wxzHniTEm+nLr7+riqpCtu9rPVCUkcUAGEY6Wajh1BO8ESGOF0mGnFikaY9HGXNjUVOKCqnYx/GZr7WumYfih1CTDH6u+JBAdKDQJPdwYYemrWG4n/ec0Y/NN2wkQUAxVkssiPuQmhOQrG7DBJCfCBJphIpm81SQ9LTEDHl9EhOLMvz5PaUck5LjmXOg0LTZBCeyiHLOSgE1RGF6iCqoige/SIntGL8WA8Ga/G26R1wZjO7KI/MN5/ANO4m0Y=</latexit>

(1 + n)kt+1 = s(w(kt), f
0(kt+1))

<latexit sha1_base64="DyggkjAiKUad/OTjecdsBT6tn5Q=">AAAB/3icbVC7SgNBFJ31GeNrVbCxGQxCqrCbQi0DNpYRzAOSJcxOZpMh81jmIYQ1hb9iY6GIrb9h5984m2yhiQcuHM65l3vviVNGtQmCb29tfWNza7u0U97d2z849I+O21pahUkLSyZVN0aaMCpIy1DDSDdVBPGYkU48ucn9zgNRmkpxb6YpiTgaCZpQjIyTBv7pGGnILTM0ZQRqyWyu64FfCWrBHHCVhAWpgALNgf/VH0psOREGM6R1LwxSE2VIGYoZmZX7VpMU4QkakZ6jAnGio2x+/wxeOGUIE6lcCQPn6u+JDHGtpzx2nRyZsV72cvE/r2dNch1lVKTWEIEXixLLoJEwDwMOqSLYsKkjCCvqboV4jBTCxkVWdiGEyy+vkna9Fl7Wwrt6pVEt4iiBM3AOqiAEV6ABbkETtAAGj+AZvII378l78d69j0XrmlfMnIA/8D5/AG1Wlkk=</latexit>

has multiple solutions

<latexit sha1_base64="aPyinClICt+t6OPnZwarbMgDcZo=">AAAB+HicbVDLSgNBEOyNrxgfiXr0MhiEnMJuDuox4MVjBPOAZAmzk9lkyOzMOg8hLvkSLx4U8eqnePNvnCR70GhBQ1HVTXdXlHKmje9/eYWNza3tneJuaW//4LBcOTruaGkVoW0iuVS9CGvKmaBtwwynvVRRnEScdqPp9cLvPlClmRR3ZpbSMMFjwWJGsHHSsFK2gt1birTkdqVU/bq/BPpLgpxUIUdrWPkcjCSxCRWGcKx1P/BTE2ZYGUY4nZcGVtMUkyke076jAidUh9ny8Dk6d8oIxVK5EgYt1Z8TGU60niWR60ywmeh1byH+5/Wtia/CjInUGirIalFsOTISLVJAI6YoMXzmCCaKuVsRmWCFiXFZlVwIwfrLf0mnUQ8u6sFto9qs5XEU4RTOoAYBXEITbqAFbSBg4Qle4NV79J69N+991Vrw8pkT+AXv4xs5dJNf</latexit>

unique solution

Case on the left has multiple equilibria, for some kt there are multiple solutions kt+1 to the
key equilibrium condition (1 + n)kt+1 = s(w(kt), f 0(kt+1)). Case on the right has a unique
equilibrium, for any fixed kt there is a unique kt+1 = g(kt) solving the equilibrium condition.

20



Sufficient Condition for Equilibrium Uniqueness

• Fix w > 0 and consider any k such that

(1 + n)k = s(w, f 0(k))

• A sufficient condition for k to be unique is that

sR(w, f 0(k)) >
1 + n

f 00(k)

• For example, if sR(w, R) > 0 this condition is satisfied.

• Intuitively, this condition requires that the income effects from a change
in R are ‘not too strong ’.

• But difficult to check in practice, because w and k are endogenous.

• To make further progress, let’s consider some specific functional forms.
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Specific Functional Forms

• Suppose the period utility function is

u(c) =
c1�✓ � 1

1 � ✓
, ✓ > 0

with constant intertemporal elasticity of substitution 1/✓.

• Suppose the production function is

F (K, L) =
⇣
↵K

��1
� + (1 � ↵)L

��1
�

⌘ �
��1

, 0 < ↵ < 1, � > 0

with constant elasticity of substitution �. For future reference

f(k) =
�
↵k

��1
� + (1 � ↵)

� �
��1

with
f 0(k) = ↵

�f(k)

k

� 1
�
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Individual Consumption/Savings Problem

• With this utility function, the consumption Euler equation is

(w � s)�✓ = �R(Rs)�✓

which solves for

s(w, R) =
�

1
✓ R

1�✓
✓

1 + �
1
✓ R

1�✓
✓

w

• Notice this has the anticipated properties

sw(w, R) 2 (0, 1), and sR(w, R) > 0 , ✓ < 1

• Can then back out

c1(w, R) = w � s(w, R) =
1

1 + �
1
✓ R

1�✓
✓

w

and

c2(w, R) = Rs(w, R) =
�

1
✓ R

1�✓
✓

1 + �
1
✓ R

1�✓
✓

Rw
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Individual Consumption/Savings Problem [✓ = 1]
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Back to Equilibrium Uniqueness

• Fix w > 0 and consider any k such that

(1 + n)k = s(w, f 0(k))

• With these constant elasticity functional forms, this can be written

k + k�� 1
✓ f 0(k)

✓�1
✓ =

w

1 + n

where
f 0(k) = ↵

�f(k)

k

� 1
�

• Can then show that a sufficient condition for uniqueness is

� +
1

✓
� 1

• Remarks. The sum of elasticities needs to be sufficiently large.

– if factors are relatively substitutable, � � 1, satisfied for any ✓ > 0
– if factors are relatively complementary, � < 1, need sufficiently high

intertemporal elasticity 1/✓
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Equilibrium Dynamics: Overview

• Assumption. Suppose the sufficient condition for uniqueness is satisfied

� +
1

✓
� 1

• Under this assumption, there is a unique kt+1 = g(kt) solving

(1 + n)kt+1 = s(w(kt), f
0(kt+1))

• Moreover dynamics are monotone, the function g(k) is increasing in k.

• The function may have multiple steady states k⇤.

• But the dynamics are bounded, cannot generate unbounded growth even
with ‘Ak ’ production function.

• Remark. Boundedness results from two key properties

(1 + n)kt+1 = s(w(kt), f
0(kt+1))  w(kt), and lim

k!1

w(k)

k
= 0
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Example: Log / Cobb-Douglas

• The combination of log utility u(c) = log c (i.e., ✓ = 1) and Cobb-Douglas
production f(k) = Ak↵ (i.e., � = 1) is particularly straightforward.

• Income and substitution effects of changes in R on savings cancel leaving

s(w, R) =
�

1 + �
w, independent of R

• The wage rate is

w(k) = f(k) � f 0(k)k = (1 � ↵)Ak↵ = (1 � ↵)f(k)

• So the equilibrium condition simplifies to

(1 + n)kt+1 =
�

1 + �
(1 � ↵)Ak↵

t
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Example: Log / Cobb-Douglas

• Writing this

kt+1 = g(kt) ⌘
(1 � ↵)A�

(1 + n)(1 + �)
k↵

t

we see that there is a unique non-trivial steady state k⇤ > 0 satisfying
k⇤ = g(k⇤) which evaluates to

k⇤ =

✓
(1 � ↵)A�

(1 + n)(1 + �)

◆ 1
1�↵

• Qualitatively, the dynamics here are similar to the Solow model.

• But note if ↵ ! 1 so that f(k) = Ak we would have k⇤ ! 0 for any A > 0.

• Constant saving rate out of wage income is not the same as a constant
saving rate out of total income.
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Example: Log / Cobb-Douglas

29



Example: Log / CES

• Suppose log utility u(c) = log c (i.e., ✓ = 1) with CES production function

f(k) =
�
↵k

��1
� + (1 � ↵)

� �
��1 , � > 0

for which the wage is

w(k) = (1 � ↵)
�
↵k

��1
� + (1 � ↵)

� 1
��1 = (1 � ↵)f(k)

1
�

• So in this case

kt+1 = g(kt) ⌘
(1 � ↵)�

(1 + n)(1 + �)
f(kt)

1
�

• Production function f(k) is concave, but what about g(k)?

• Differentiating twice and collecting terms we get

g00(k)

g(k)
=

1

�

(
f 00(k)

f(k)
+

✓
1

�
� 1

◆✓
f 0(k)

f(k)

◆2
)
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Example: Log / CES

• From this we have two cases to consider.

(i) factors are relatively substitutable, � � 1, implies g00(k) < 0 for all k and
there is a unique non-trivial steady state k⇤ > 0.

(ii) factors are relatively complementary, � < 1, implies g00(k) > 0 for k < kcrit

and g00(k) < 0 for k > kcrit where the critical value kcrit solves g00(k) = 0
and works out to be

kcrit =

✓
(1� ↵)
↵(1� �)

◆ �
��1

, � < 1

in this case, there are either

(a) two non-trivial steady states, of which only the larger is stable, or

(b) zero non-trivial steady states, if g(k) < k for all k

• Remark. In case (ii) there is an endogenous poverty trap in the sense
that if kt < kcrit then kt ! 0+.
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Example: Log / CES [case (i), � > 1]
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Example: Log / CES [case (ii.a), � < 1]
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Example: Log / CES [case (ii.b), � < 1]
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OLG Planning Problem

• Consider planner that seeks to maximize

W =
X

t

!tUt =
X

t

!t

⇥
u(c1

t ) + �u(c2
t+1)

⇤

subject to sequence of aggregate resource constraints

Ltc
1
t + Lt�1c

2
t + Kt+1  F (Kt, Lt)

• In per worker terms, the resource constraint is

c1
t +

1

1 + n
c2
t + (1 + n)kt+1  f(kt)

• Remark. Planning weights ! need only ensure objective is well-defined,
do not need !t = �t or indeed need strictly geometric discounting at all.
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OLG Planning Problem

• Lagrangian with multiplier �t � 0 for each resource constraint

L =
1X

t=0

!t

⇥
u(c1

t ) + �u(c2
t+1)

⇤
+

1X

t=0

�t

h
f(kt)� c1

t �
1

1 + n
c2
t � (1 + n)kt+1

i

• Key first order conditions, hold at each date

c1
t : !tu

0(c1
t ) � �t = 0

c2
t : !t�1�u0(c2

t ) � �t
1

1 + n
= 0

kt+1 : ��t(1 + n) + �t+1f
0(kt+1) = 0

�t : f(kt) � c1
t �

1

1 + n
c2
t � (1 + n)kt+1 = 0
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Intertemporal Consumption Allocation

• Consider intertemporal consumption for individual born at date t.

• First order condition for consumption c1
t when they are young

�t = !tu
0(c1

t )

• First order condition for consumption c2
t+1 when they are old

�t+1 = !t�u0(c2
t+1)(1 + n)

• Then using the first order condition for capital accumulation

�t(1 + n) = �t+1f
0(kt+1)

we see that the planning weights !t and 1 + n factors cancel, giving usual

u0(c1
t ) = �u0(c2

t+1)f
0(kt+1)

just as they would choose for themselves.
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Intratemporal Allocation Between Young & Old

• Now consider intratemporal allocation between young and old at date t.

• Comparing the first order conditions for c1
t and c2

t we get

!tu
0(c1

t ) = !t�1�u0(c2
t )(1 + n)

• This condition is static up to the exogenous planning weights !t/!t�1.

• Example. Suppose the planning weights are !t = �̂t for some discount
factor �̂ not necessarily equal to �. Then the planner would set

u0(c2
t )

u0(c1
t )

= (1 + n)
�̂

�

so that the planner trades off consumption for the old vs. consumption
for the young at an effective relative price of (1 + n)�̂/�.
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Discussion

• Conditional on Rt+1 = f 0(kt+1), the planner allocates individual lifetime
consumption exactly as the individuals would choose for themselves.

• This is because there is no ‘market failure’ for the planner to correct,
conditional on Rt+1 = f 0(kt+1).

• Note this is independent of the planning weights !t. Instead, where the
planning weights matter is in allocating resources between young and old
within a given period.

• So key question becomes, how does planner’s kt+1 and hence planner’s
Rt+1 = f 0(kt+1) compare to decentralized market outcome?

• To figure this out, we need to see how planner’s kt+1 is determined.
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Dynamical System

• System of three nonlinear difference equations in c1
t , c

2
t and kt+1

u0(c1
t ) = �u0(c2

t+1)f
0(kt+1)

and
c1
t +

1

1 + n
c2
t + kt+1 = f(kt)

and
!tu

0(c1
t ) = !t�1�u0(c2

t )(1 + n)

taking as given the planning weights !t/!t�1 which drive any
time-dependence in the allocation between c1

t and c2
t .

• Assumption. Suppose planning weights are asymptotically geometric

lim
t!1

!t

!t�1
= �̂ 2 (0, 1)

for some �̂ not necessarily equal to �.
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Steady State

• Steady state c1⇤, c2⇤ and k⇤.

• Would ordinarily start with Euler equation

u0(c1
t ) = �u0(c2

t+1)f
0(kt+1)

• But in general c1⇤ 6= c2⇤ so cannot use individual Euler equation to
conclude planner’s k⇤ solves 1 = �f 0(k⇤).

• Instead use intratemporal allocation between young and old

�̂u0(c1
t ) = �u0(c2

t )(1 + n)

to write Euler equation between the young at t and the young at t + 1 as

u0(c1
t ) =

�̂

1 + n
u0(c1

t+1)f
0(kt+1)

41



Steady State

• So planner’s steady state capital stock solves

�̂f 0(k⇤) = 1 + n

• This is in general different to the decentralized market outcome.

• Given k⇤, aggregate consumption per worker c⇤ is then given by

c⇤ ⌘ c1⇤ +
1

1 + n
c2⇤ = f(k⇤) � (1 + n)k⇤

• We then split c⇤ into c1⇤ and c2⇤ using the intratemporal allocation
between young and old, namely

�̂u0(c1⇤) = �u0(c2⇤)(1 + n)
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Golden Rule

• As in the basic Solow model, aggregate consumption per worker is
‘hump-shaped’ in k⇤.

• In particular

dc⇤

dk⇤ = f 0(k⇤) � (1 + n) < 0 , k⇤ < k⇤
gr

where the golden rule level is given by

f 0(k⇤
gr) = 1 + n

(Approximately the same as the planner’s steady state if �̂ ⇡ 1)

• Let k⇤
ce denote the competitive equilibrium steady state capital stock.

• If k⇤
ce > k⇤

gr then we can increase consumption for young and old, thereby
making both better off, by reducing saving, i.e., reducing capital.
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Dynamic Inefficiency

• We say that the economy is dynamically inefficient if k⇤
ce > k⇤

gr.

• Since k⇤
ce satisfies f 0(k⇤

ce) = R⇤ and k⇤
gr satisfies f 0(k⇤

gr) = 1 + n,
equivalently an economy is dynamically inefficient if

r⇤ < n

where r⇤ = R⇤ � 1 is the net real return to capital.

• Remark. This configuration was impossible in the counterpart
neoclassical growth model, which has r⇤ > ⇢ + n where ⇢ = 1/� � 1.
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Intuition

• Young at time t face prices wt, Rt reflecting the capital stock kt.

• Capital stock kt the result of previous generations savings decisions.

• In other words, previous generations’ savings decisions impose a pecuniary
externality on the current (and future) young.

• Ordinarily, pecuniary externalities do not cause an equilibrium to be
Pareto inefficient, i.e., are not a source of market failure.

• But here there is a perpetual arrival of new young, n > 0, and the planner
may be able to rearrange consumption over time to take advantage of
these pecuniary externalities.
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Alternative Intuition

• Dynamic inefficiency results from overaccumulation of capital.

• Saving results from young providing for their old age. Young will have a
strong incentive to save if they have a declining lifetime labor income
profile, e.g., the (wt, 0) profile here.

• But the more they young save, the lower is the return on capital.

• This creates an adverse income effect, which, if strong enough, only
encourages more saving.

• If only there was another vehicle for saving which did not depress the
return on physical capital!
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Social Security and Capital Accumulation

• Social security provides a possible solution to overaccumulation.

• We will contrast two extremes

(i) fully-funded system, young make contributions to social security system,
paid back to them in old age

(ii) unfunded system, transfers from young to old, making use of perpetual
arrival of new young

discourages saving, but that may be Pareto-improving
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Fully-Funded System

• Government takes dt from young workers, invested in physical capital and
returned, with interest, when old.

• Taking dt and factor prices as given, individual born at date t chooses
consumption and savings st to maximize

Ut = u(c1
t ) + �u(c2

t+1), 0 < � < 1

subject to
c1
t + st + dt  wt

and
c2
t+1  Rt+1(st + dt)

• Capital per worker now evolves according to

(1 + n)kt+1 = st + dt
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Fully-Funded System

• Previously only way to have c2
t+1 > 0 was to have st > 0, so workers had

to save themselves.

• Now young workers effectively choose ŝt ⌘ st + dt and our previous
analysis goes through [this may require st < 0 if dt is large relative to the
savings young would choose if dt = 0].

• In other words, taking dt as given young households choose savings st

that perfectly offset dt so that they end up with the consumption/savings
profiles they would have had if dt = 0.

• In this sense, a fully-funded system cannot address the overaccumulation
problem, if it exists.
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Unfunded System

• Government takes dt from each of Lt young, transfers to current old
giving them dtLt/Lt�1 = (1 + n)dt each.

• Taking dt and factor prices as given, individual born at date t chooses
consumption and savings st to maximize

Ut = u(c1
t ) + �u(c2

t+1), 0 < � < 1

subject to
c1
t + st + dt  wt

and
c2
t+1  Rt+1st + (1 + n)dt+1

• Capital per worker now evolves according to

(1 + n)kt+1 = st

because here dt is a within-period transfer, not invested in capital.
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Unfunded System

• Rate of return on social security payments is n, not rt+1.

• Income effect of payments (1 + n)dt+1 discourages saving at the margin.

• Would be unfortunate if economy is dynamically efficient, because would
decrease capital formation and decrease consumption of young and old.

• But may be Pareto-improving if economy is dynamically inefficient,
lessens the overaccumulation problem.

• Initial old are windfall beneficiaries, receiving transfers from initial young
never having made contributions themselves.
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Summary

• OLG provides a tractable alternative to neoclassical growth model.

• In special cases, looks just like the Solow growth model. But much richer
dynamics are possible, especially if income effects are strong or factors are
sufficiently complementary.

• Perpetual arrival of new young creates a ‘double infinity’ of agents and
commodities.

• Competitive equilibrium may be inefficient, even absent traditional
sources of market failure.

• Economy may be dynamically inefficient, accumulating too much capital.

• But probably should not over-emphasize dynamic inefficiency. For most
countries the problem seems to be too little capital not too much.
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Next Class

• Endogenous growth.

• Externalities in capital accumulation.

• Variations on the Ak theme.
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Homework

• Consider the two-period OLG model and suppose the utility and
production functions are

u(c) =
c1�✓ � 1

1 � ✓
, and f(k) =

�
↵k

��1
� + (1 � ↵)

� �
��1

• Suppose the sufficient condition for equilibrium uniqueness is satisfied

� +
1

✓
� 1

• Let kt+1 = g(kt) solve the key equilibrium condition.

• Check. Show that the equilibrium dynamics are montone, g0(k) > 0.

• Check. Show that the equilibrium dynamics are bounded, for any k0 > 0
we have kt  max[k0, k̄] for some k̄ < 1 to be determined.
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