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Roadmap

• Recall the Solow model assumes an exogenous saving rate s.

• The neoclassical growth model studies optimal saving behavior.

[Ramsey (1928), version here follows Cass (1965) and Koopmans (1965)]

• Next three lectures cover the neoclassical growth model and its
connections to dynamic general equilibrium theory

(L5) intertemporal preferences, optimal saving in a basic production economy

(L6) further details, applications, examples, extensions

(L7) decentralization, dynamic general equilibrium theory
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Roadmap

• Beyond its application to growth per se, the neoclassical growth model
serves as a starting point for a vast array of applied macroeconomic
models, not all of which have the same efficiency properties.

• Version here relies heavily on a representative agent assumption.

• We will discuss in detail what this assumption does and does not mean.

• In subsequent lectures we will turn to an overlapping generations model
that dispenses with the representative agent assumption.

• But before any of this, a review of intertemporal choice.
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Outline

1. Intertemporal choice

2. Neoclassical growth model: planning problem
Steady state
Transitional dynamics

3. Neoclassical growth model: continuous time
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Choice

• Suppose consumption bundles c � 0

• Preferences represented by concave utility function U(c), ranks bundles

• Consumer faces prices p and has endowments y, budget constraint

p · c  p · y

• Lagrangian with single multiplier � � 0 is

U(c) + �p · (y � c)

• System of first order necessary conditions

rU(c) = �p
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Choice

• Solve first order conditions to get c(�p)

• Plug into budget constraint to pin down multipler

p · c(�p) = p · y ) �(p,y)

• Solution is then
c⇤(p,y) = c(�(p,y)p)

• Prices p matter both directly (substitution effects) and indirectly via
multipler � (income/wealth effects).
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Intertemporal Choice

• Now let c represent the dated consumption stream

c = {c0, c1, c2, . . . } = {ct}

• And let p represent the prices of these dated consumption goods

p = {p0, p1, p2, . . . } = {pt}

• System of first order conditions rU(c) = �p has typical element

Uc,t(c) = �pt, t = 0, 1, 2, . . .

where Uc,t(c) denotes the marginal utility of consumption at date t.

• Standard ‘marginal rate of substitution (MRS) equals relative price’
tangency condition

Uc,t+1(c)

Uc,t(c)
=

pt+1

pt
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Time-Separable Utility

• We will typically specialize to the case of a time-separable utility function

U(c) =
1X

t=0

�tu(ct), 0 < � < 1

with strictly concave period utility, u0(c) > 0, u00(c) < 0.

• Future utility is discounted by constant factor �

1, �, �2, �3, . . .

• Marginal utility of date-t consumption

Uc,t = �tu0(ct)

depends only on t and ct, not consumption on any other date.

• Tangency condition simplifies to

�
u0(ct+1)

u0(ct)
=

pt+1

pt

7



Intertemporal Prices and Real Interest Rates

• Equivalently
�u0(ct)

1

pt
+ �u0(ct+1)

1

pt+1
= 0

• Suppose consumer could trade in a riskless real bond, giving up one unit
of consumption at t to get Rt+1 units of consumption for sure at t+ 1.

• Consumer would be indifferent to holding such an investment if

�u0(ct) + �u0(ct+1)Rt+1 = 0

• In short, intertemporal prices pt and real interest rates are linked by

pt+1

pt
= R�1

t+1 )
pt
p0

=
tY

s=0

R�1
s , t � 1

• Example. Suppose a constant R. Then pt/p0 = R�t.
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Consumption Euler Equation

• This tangency condition is often written

u0(ct) = �u0(ct+1)Rt+1, or �
u0(ct+1)

u0(ct)
Rt+1 = 1

• A standard optimality condition in consumption/savings problems,
known as a consumption Euler equation.

• Key intuition: consuming 1 unit less at t costs u0(ct) utility but delivers
Rt+1 per unit at t+ 1 which when converted to utility and discounted
back to t is a marginal benefit of �u0(ct+1)Rt+1.

At the optimum, marginal cost equals marginal benefit.

• Remark. Slight abuse of notation, this R is not in general the rental rate.
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Consumption Dynamics

• Recall that u00(c) < 0. This implies

ct+1 > ct , u0(ct+1) < u0(ct) , �Rt+1 > 1

• Let r = R� 1 denote the net real interest rate and likewise let
⇢ = 1/� � 1 denote the discount rate [the ‘pure rate of time preference’].

• Then we have
ct+1 > ct , rt+1 > ⇢

• Qualitatively, consumption grows when real interest rate relatively high.
Quantitatively, strength of this effect depends on attitudes to
intertemporal substitution, embedded in curvature of u0(c).
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Intertemporal Substitution

• The intertemporal elasticity of substitution is the relative change in
consumption in response to a change in relative prices along a given
indifference curve [holding the level of utility constant]

d log
⇣

ct+1

ct

⌘

d log
⇣

pt+1

pt

⌘

• Example. CES preferences

Ũ =

 1X

t=0

�tc1�✓
t

! 1
1�✓

, ✓ > 0

Implies constant intertemporal elasticity of substitution

d log
⇣

ct+1

ct

⌘

d log
⇣

pt+1

pt

⌘ = �
1

✓
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Intertemporal Substitution

• To see this, first observe that Ũ represents the same preferences as

U =
1X

t=0

�tu(ct), u(c) =
c1�✓

� 1

1� ✓
, ✓ > 0

• For these preferences, the MRS equal relative price tangency condition is

�
u0(ct+1)

u0(ct)
= �

✓
ct+1

ct

◆�✓

=
pt+1

pt

or
ct+1

ct
=

✓
�

pt
pt+1

◆1/✓

= (�Rt+1)
1/✓

So indeed the elasticity is constant, 1/✓ in this parameterization.
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Intertemporal Substitution

• Now recall the approximation log(1 + x) ⇡ x for small x.

• Then ⇢ ⇡ � log � > 0 and rt+1 ⇡ logRt+1 = � log(pt+1/pt) so that

log

✓
ct+1

ct

◆
⇡

rt+1 � ⇢

✓

• In short, the intertemporal elasticity of substitution 1/✓ measures the
sensitivity of consumption growth to real interest rates.

• Examples.

– perfect substitutes, ✓ = 0, consumption growth very sensitive to rt+1

– perfect complements, ✓ = 1, consumption growth invariant to rt+1

– log utility, ✓ = 1, consumption growth responds 1-for-1 to rt+1
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Aside on Log Utility

• Special case ✓ = 1 corresponds to log utility. Using l’Hôpital’s rule

lim
✓!1

c1�✓
� 1

1� ✓
= log c

• So intertemporal utility is

U =
1X

t=0

�t log ct

• This is a special case of Cobb-Douglas utility with ‘weights’ �t.

• Has the familiar constant expenditure share property

pt+1ct+1

ptct
= �
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Aside on Risk Aversion

• This is a deterministic model. There is no risk.

• But the CES parameter ✓ corresponds to the Arrow-Pratt coefficient of
relative risk aversion

R(c) ⌘ �
u00(c)c

u0(c)
= ✓ > 0

• Because of this, these CES preferences are sometimes known as CRRA
[constant relative risk aversion] preferences.

• This functional form has the special property that attitudes to risk ✓ are
bound up with attitudes to deterministic intertemporal substitution 1/✓,
even though these are intrinsically distinct concepts.
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Outline

1. Intertemporal choice

2. Neoclassical growth model: planning problem
Steady state
Transitional dynamics

3. Neoclassical growth model: continuous time
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Neoclassical Growth Model: Planning Problem

• Discrete time t = 0, 1, 2, . . .

• To fix ideas, special case with Lt = L and At = A.

• Aggregate production function

Yt = F (Kt, AL)

• Goods may be either consumed or invested

Ct + It = Yt

• Capital accumulation

Kt+1 = (1� �)Kt + It, 0 < � < 1, K0 > 0

• Gives the sequence of resource constraints, one for each date

Ct +Kt+1 = F (Kt, AL) + (1� �)Kt, K0 > 0

16



Neoclassical Growth Model: Planning Problem

• Planner seeks to maximize utility of L identical households

1X

t=0

�t u
�Ct

L

�
L, 0 < � < 1

subject to sequence of resource constraints, one for each date

Ct +Kt+1 = F (Kt, AL) + (1� �)Kt, K0 > 0

• Remarks. Usual interpretation is that this is a benevolent planner
seeking to maximize the households’ own (identical) utility function.

Can construct a ‘representative agent’ in a broad range of settings, using
the second welfare theorem, but then may lose some normative appeal.

Infinite horizon keeps the model stationary, no life-cycle effects.
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Neoclassical Growth Model: Planning Problem

• Let ct = Ct/L denote consumption per household, kt = Kt/L etc.

• Planner chooses stream c of consumption per household to maximize

U(c) =
1X

t=0

�t u(ct), 0 < � < 1

subject to sequence of resource constraints, one for each date

ct + kt+1 = f(kt) + (1� �)kt, k0 > 0

• Remarks. Intensive form of the production function f(k) ⌘ F (k,A).

Other than the infinite horizon, this is a standard concave problem.
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Neoclassical Growth Model: Planning Problem

• Lagrangian with multiplier �t � 0 for each resource constraint

L =
1X

t=0

�tu(ct) +
1X

t=0

�t
⇥
f(kt) + (1� �)kt � ct � kt+1

⇤

• Key first order conditions, hold at each date

ct : �tu0(ct)� �t = 0

kt+1 : ��t + �t+1

⇥
f 0(kt+1) + 1� �

⇤
= 0

�t : f(kt) + (1� �)kt � ct � kt+1 = 0

• Transversality condition, analogous to kT+1 = 0 in finite horizon problem

lim
T!1

�T kT+1 = 0
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Consumption Euler Equation Revisited

• Eliminating the multipliers, we get a consumption Euler equation

u0(ct) = �u0(ct+1)
⇥
f 0(kt+1) + 1� �| {z }

‘Rt+1’

⇤

• Marginal rate of transformation (MRT) between t and t+ 1

f 0(kt+1) + 1� �

• Marginal rate of substitution (MRS) between t and t+ 1

u0(ct)

�u0(ct+1)

• Planner equates MRS and MRT. Supported by shadow prices
�t
�t+1
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Planner Equates Intertemporal MRS and MRT
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Dynamical System

• Gives a system of two nonlinear difference equations in ct, kt

u0(ct) = �u0(ct+1)
⇥
f 0(kt+1) + 1� �

⇤

and
ct + kt+1 = f(kt) + (1� �)kt

• Two boundary conditions: (i) k0 > 0 and (ii) transversality condition

lim
T!1

�Tu0(cT )kT+1 = 0
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Outline

1. Intertemporal choice

2. Neoclassical growth model: planning problem
Steady state
Transitional dynamics

3. Neoclassical growth model: continuous time
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Steady State

• Steady states are fixed points of the form ct+1 = ct and kt+1 = kt.

• Let c⇤, k⇤ denote steady state values. These are uniquely determined by

1 = �
⇥
f 0(k⇤) + 1� �

⇤
, f 0(k⇤) = ⇢+ �

and
c⇤ = f(k⇤)� �k⇤

• Steady state Euler equation first pins down k⇤.

• Given steady state k⇤, resource constraint then determines c⇤.
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Modified Golden Rule

• Let C(k) denote hypothetical steady state c given steady state k

C(k) ⌘ f(k)� �k

That is, {(c, k) : c = C(k)} is the set of points such that kt+1 = kt.

• Note that C(k) is maximized at the ‘golden rule ’ level, where

f 0(k⇤gr) = �

• Now have a ‘modified golden rule’. Steady state capital determined by

f 0(k⇤) = ⇢+ �

• Since f 00(k) < 0 and ⇢ > 0, steady state capital is less than the golden
rule level. Earlier consumption is preferred to later consumption.
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Steady State Saving Rate

• Let s⇤ denote the steady state saving rate.

• Since savings equals investment, the steady state saving rate is

s⇤ =
�k⇤

y⇤
=

�

⇢+ �

f 0(k⇤)k⇤

f(k⇤)

• Example. Suppose f(k) = k↵A1�↵. Recall in this case s⇤gr = ↵ so

s⇤ =
�

⇢+ �
↵ =

�

⇢+ �
s⇤gr

• Of course saving is in general time-varying outside steady state.
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Outline

1. Intertemporal choice

2. Neoclassical growth model: planning problem
Steady state
Transitional dynamics

3. Neoclassical growth model: continuous time
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Transitional Dynamics

• Consumption dynamics

ct+1 > ct , kt+1 < k⇤

• Capital dynamics

kt+1 > kt , ct < C(kt)

• Partitions ct, kt space into four regions.

• Use phase diagram in ct, kt space to analyze dynamics.
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Phase Diagram
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Saddle Path

• Capital k0 is pre-determined (historically given) at date t = 0

• Consumption c0 not pre-determined, can take on any value in feasible set

0  c0  f(k0) + (1� �)k0

• Dynamics saddle-path unstable. Almost all trajectories diverge from c⇤, k⇤.

• There is a single curve in ct, kt space that leads to the steady state, the
stable-arm, which we can write

ct = g(kt)

(in dynamic programming terms, this is the policy function)

• Initial consumption is the one degree of freedom that can be used to avoid
diverging. Initial consumption jumps to the stable arm

c0 = g(k0)
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Stable Arm
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Solving the Model

• Solving the model reduces to finding the function g(k).

• Except in a handful of special cases, no closed form solutions.

• Powerful numerical methods exist to approximate g(k) globally, but
beyond the scope of this course.

• We will look at local dynamics, linear approximations around c⇤, k⇤.

• For standard parameterizations, the neoclassical growth model is
‘near-linear’ anyway so not much loss. But not always so innocuous.

• These dynamics are slightly cleaner in continuous time.
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Outline

1. Intertemporal choice

2. Neoclassical growth model: planning problem
Steady state
Transitional dynamics

3. Neoclassical growth model: continuous time
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Continuous Time

• Planner’s problem in continuous time is to choose path of consumption
per household c � 0 to maximize

U(c) =

Z 1

0
e�⇢t u(c(t)) dt, ⇢ > 0

subject to the flow resource constraint

k̇(t) = f(k(t))� �k(t)� c(t), k(0) > 0

• Current-value Hamiltonian for this problem

H(c, k,�) ⌘ u(c) + �(f(k)� �k � c)

• Recall that the key optimality conditions can be written

Hc = 0, Hk = ⇢�� �̇, H� = k̇

along with the transversality condition.
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Hamiltonian H(c, k,�) ⌘ u(c) + �(f(k)� �k � c)

• Calculating the derivatives of the Hamiltonian

Hc = u0(c)� �

Hk = �(f 0(k)� �)

H� = f(k)� �k � c

• Hence our system of optimality conditions can be written

u0(c(t)) = �(t)

�̇(t) = (⇢� (f 0(k(t))� �))�(t)

k̇(t) = f(k(t))� �k(t)� c(t)

along with the transversality condition and given initial condition.

• As usual, reduce this to a system in c(t), k(t) by eliminating the
multipliers. To do this, differentiate the first condition with respect to t

u00(c(t))ċ(t) = �̇(t)
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Consumption Euler Equation

• Using this to eliminate the multipliers, we get the continuous time
consumption Euler equation

ċ(t)

c(t)
= E(c(t)) ⇥ (f 0(k(t))� � � ⇢) , E(c) ⌘ �

u0(c)

u00(c)c

where E(c) is the intertemporal elasticity of substitution.

• To streamline notation, from now on we will use restrict attention to the
special case of CES preferences with constant E(c) = 1/✓.

• With this simplification

ċ(t)

c(t)
=

f 0(k(t))� � � ⇢

✓
,
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Dynamical System

• So we have a system of two nonlinear differential equations in c(t), k(t)

ċ(t) =
f 0(k(t))� � � ⇢

✓
c(t)

k̇(t) = f(k(t))� �k(t)� c(t)

• Two boundary conditions: (i) k(0) > 0 and (ii) transversality condition

lim
T!1

e�⇢Tu0(c(T ))k(T ) = 0

• Steady state as in discrete time, f 0(k⇤) = ⇢+ � and c⇤ = f(k⇤)� �k⇤.

• One given initial condition k(0), initial consumption c(0) can jump.

• Now look at dynamics local to steady state.
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Local Dynamics

• Nonlinear system of the form
✓

ċ(t)
k̇(t)

◆
=

✓
 1(c(t), k(t))
 2(c(t), k(t))

◆

where

 1(c, k) ⌘
f 0(k)� ⇢� �

�
c,  2(c, k) ⌘ f(k)� �k � c

• Approximate dynamics
✓

ċ(t)
k̇(t)

◆
=

✓
@
@c 1(c, k)

@
@k 1(c, k)

@
@c 2(c, k)

@
@k 2(c, k)

◆✓
c(t)� c⇤

k(t)� k⇤

◆

where the Jacobian matrix is evaluated at steady state c⇤, k⇤.

• Local stability depends on signs of the eigenvalues of this Jacobian.
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Local Dynamics

• Calculating the elements of the Jacobian

J =

0

@
@
@c 1(c, k)

@
@k 1(c, k)

@
@c 2(c, k)

@
@k 2(c, k)

1

A

������
c⇤,k⇤

=

0

B@
0

f 00(k⇤)

✓
c⇤

�1 ⇢

1

CA

• In slight abuse of notation, let �1,�2 denote the eigenvalues of this matrix.

• Eigenvalues characterized by determinant

det(J) = �1�2 =
f 00(k⇤)

✓
c⇤ < 0

and trace
tr(J) = �1 + �2 = ⇢ > 0

• Hence eigenvalues real and of opposite sign, say

�1 < 0 < �2

and so, as anticipated, imply saddle path dynamics.
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Eigenvalues

• Eigenvalues are roots of the characteristic polynomial, here a quadratic

0 = �2 � tr(J)�+ det(J) = �2 � ⇢�+
f 00(k⇤)

✓
c⇤

• Gives

�1 =
⇢�

q
⇢2 � 4 f 00(k⇤)c⇤

✓

2
< 0 <

⇢+
q
⇢2 � 4 f 00(k⇤)c⇤

✓

2
= �2

• Both of these roots have an economic interpretation.

• Stable root �1 < 0 controls speed of adjustment to steady state c⇤, k⇤.

• Unstable root �2 > 0 gives the slope of the stable arm local to c⇤, k⇤, that
is, the slope of the policy function at steady state.
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Method of Undetermined Coefficients

• Direct approach to solving the linearized dynamics.

• Write out the linear approximation

ċ(t) =
f 00(k⇤)c⇤

✓
(k(t)� k⇤)

and
k̇(t) = ⇢(k(t)� k⇤)� (c(t)� c⇤)

• Implies a second-order differential equation in k(t), namely

k̈(t) = ⇢k̇(t)�
f 00(k⇤)c⇤

✓
(k(t)� k⇤)

• Now guess model is solved by a linear law of motion

k̇(t) = �(k(t)� k⇤)

for some coefficient � to be determined.
38



Method of Undetermined Coefficients

• Guess implies that

k̈(t) = �k̇(t) = �2(k(t)� k⇤)

• So if this guess is to be true, � must satisfy
h
�2 � ⇢�+

f 00(k⇤)c⇤

✓

i
(k(t)� k⇤) = 0

• Has to hold for any value of k(t)� k⇤, which is only true if

�2 � ⇢�+
f 00(k⇤)c⇤

✓
= 0

• But this is just the characteristic polynomial again.

• So choose the stable root � ⌘ �1 < 0, approximate solution

k̇(t) = �1(k(t)� k⇤) ) k(t) = k⇤ + e�1t(k(0)� k⇤)
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Stable Arm

• Then recover consumption from linearized resource constaint

k̇(t) = �1(k(t)� k⇤) ) c(t)� c⇤ = (⇢� �1)(k(t)� k⇤)

• Stable arm is a curve c = g(k) with c⇤ = g(k⇤), so local to steady state

c(t)� c⇤ = g0(k⇤)(k(t)� k⇤)

• So matching coefficients, the slope of the stable arm local to c⇤, k⇤ is

g0(k⇤) = ⇢� �1 > ⇢ > 0

• But we calculated tr(J) = ⇢ and since tr(J) = �1 + �2 we conclude

g0(k⇤) = �2 > 0
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True Dynamics
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Local Approximation to True Dynamics
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Zooming In
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Taking Stock

• Have set up and determined basic properties of neoclassical growth model.

• Now need to actually put this to work.
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Next class

• Restriction on preferences needed to ensure balanced growth.

• Applications, examples, extensions.
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Homework

• Consider the discrete time neoclassical growth model with u(c) = log c,
full depreciation � = 1, and y = f(k) = k↵A1�↵.

• Check. Show that the consumption policy function

ct = g(kt) = (1� ↵�)f(kt)

satisfies the consumption Euler equation and resource constraint on every
date t, for any given k0 > 0, and satisfies the transversality condition.

• Consider the continuous time neoclassical growth model. Local to the
steady state c⇤, k⇤ the policy function c = g(k) is approximately

c(t)� c⇤ = g0(k⇤)(k(t)� k⇤), g0(k⇤) = � > 0

• Check. Use the method of undetermined coefficients to show that � > 0
is the unstable root of the local dynamics.
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