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Roadmap

® Recall the Solow model assumes an exogenous saving rate s.

® The neoclassical growth model studies optimal saving behavior.

|Ramsey (1928), version here follows Cass (1965) and Koopmans (1965)]

® Next three lectures cover the neoclassical growth model and its
connections to dynamic general equilibrium theory

(L5) intertemporal preferences, optimal saving in a basic production economy
(L6) further details, applications, examples, extensions

(L7) decentralization, dynamic general equilibrium theory



Roadmap

® Beyond its application to growth per se, the neoclassical growth model
serves as a starting point for a vast array of applied macroeconomic
models, not all of which have the same efficiency properties.

® Version here relies heavily on a representative agent assumption.
® We will discuss in detail what this assumption does and does not mean.

® In subsequent lectures we will turn to an overlapping generations model
that dispenses with the representative agent assumption.

® But before any of this, a review of intertemporal choice.



1. Intertemporal choice

2. Neoclassical growth model: planning problem
Steady state
Transitional dynamics

3. Neoclassical growth model: continuous time



Choice

® Suppose consumption bundles ¢ > 0
® Preferences represented by concave utility function U(e¢), ranks bundles

® Consumer faces prices p and has endowments y, budget constraint
p-c<p-y
® Lagrangian with single multiplier A > 0 is
Ul(e) + Ap- (y —c)
® System of first order necessary conditions

VU(c) = Ap



Choice

® Solve first order conditions to get c(\p)

® Plug into budget constraint to pin down multipler

p-c(Ap)=p-y = AP, y)

® Solution is then
c’(p,y) = c(A\(p,y)p)

® Prices p matter both directly (substitution effects) and indirectly via
multipler A (income/wealth effects).



Intertemporal Choice

® Now let c represent the dated consumption stream
c=1{cy, c1, co, ... }={c}
® And let p represent the prices of these dated consumption goods
p={po, p1, P2 - }={p:}
® System of first order conditions VU (c) = Ap has typical element
Uet(€) = Apy, t=20,1,2,...

where U, ;(c) denotes the marginal utility of consumption at date t.

e Standard ‘marginal rate of substitution (MRS) equals relative price’
tangency condition
Uectvi(c)  Diy1
U c,t(C) Pt

6



Time-Separable Utility

® We will typically specialize to the case of a time-separable utility function
Ule) =) Blule), 0<pB<1
t=0

with strictly concave period utility, u'(c) > 0, v”(¢) < 0.

® Future utility is discounted by constant factor [
1, B, B 8,
® Marginal utility of date-t consumption
Uet = 5tu/(0t)

depends only on ¢ and ¢;, not consumption on any other date.

® Tangency condition simplifies to

u’ (Ct+1) _ Pt+1
u'(ct) Dt
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Intertemporal Prices and Real Interest Rates

® Equivalently
1 1
—u'(¢p)— + pu’(cpqq
( t)pt (et )pt+1

=0

® Suppose consumer could trade in a riskless real bond, giving up one unit
of consumption at ¢ to get R;11 units of consumption for sure at t + 1.

® Consumer would be indifferent to holding such an investment if

—u'(ct) + B (coq1) Regr =0

® In short, intertemporal prices p; and real interest rates are linked by

t
Pt+1 —1 Dt —1
—— =R = — = | | R -, t>1
% b Po 0 ’

® EXAMPLE. Suppose a constant R. Then p;/py = R™*.
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Consumption Euler Equation

® This tangency condition is often written

U’(Ct+1)

’U/(ct> = 5U/(Ct—|—1)Rt—|—17 or 6 u/(ct)

Rip1 =1

® A standard optimality condition in consumption/savings problems,
known as a consumption Fuler equation.

¢ Key intuition: consuming 1 unit less at ¢ costs u'(c;) utility but delivers
R; 1 per unit at ¢t + 1 which when converted to utility and discounted
back to t is a marginal benefit of Su’(csy1)Rya1.

At the optimum, marginal cost equals marginal benefit.

e REMARK. Slight abuse of notation, this R is not in general the rental rate.



Consumption Dynamics

® Recall that u”(¢) < 0. This implies

Ct41 > Ct — U/(Ct_|_1) < U/(Ct) <~ BRt—I—l > 1

® et r = R — 1 denote the net real interest rate and likewise let
p =1/ — 1 denote the discount rate [the ‘pure rate of time preference’|.

® Then we have
Ct41 > Ct = Tt41 > P

e (QQualitatively, consumption grows when real interest rate relatively high.
Quantitatively, strength of this effect depends on attitudes to
intertemporal substitution, embedded in curvature of u’(c).
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Intertemporal Substitution

® The intertemporal elasticity of substitution is the relative change in
consumption in response to a change in relative prices along a given
indifference curve |holding the level of utility constant|

dlog (Ct“)
dlog (2t )

e EXAMPLE. CES preferences

Implies constant intertemporal elasticity of substitution

dlog (CtH) 1
dlog (pt“) 0
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Intertemporal Substitution

e To see this, first observe that U represents the same preferences as

U=) Blulc),  ulc)= . 0>0
t=0

® For these preferences, the MRS equal relative price tangency condition is

/ —0
u'(Cey1) e (Ct—l—l) _ Pt+1

w (ct) Ct Dt

B

or

Ct+1 Dt Ho 1/6
- — (5 ) — (ﬁRt-H)

Ct Pt+1

So indeed the elasticity is constant, 1/6 in this parameterization.
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Intertemporal Substitution

® Now recall the approximation log(1 + =) ~ = for small x.
® Then p~ —log >0 and 1,11 ~ log Ryyv1 = —log(psr1/p:) so that

log (Ct—l—l) ~ T't+1 — P
Ct 0

® In short, the intertemporal elasticity of substitution 1/0 measures the
sensitivity of consumption growth to real interest rates.

® EXAMPLES.

— perfect substitutes, @ = 0, consumption growth very sensitive to r¢4+1
— perfect complements, 0 = oo, consumption growth invariant to ry41

— log utility, 6 = 1, consumption growth responds 1-for-1 to r¢41
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Aside on Log Utility

® Special case # = 1 corresponds to log utility. Using I’Hopital’s rule

1—9_1

1 =1
91—% 1 -6 08 ¢

® So intertemporal utility is
©.@)
U = Z Bt log ¢,
t=0

e This is a special case of Cobb-Douglas utility with ‘weights’ 3.

® Has the familiar constant expenditure share property

Pt+1Ct+1 3
PtCt
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Aside on Risk Aversion

® This is a deterministic model. There is no risk.

e But the CES parameter 6 corresponds to the Arrow-Pratt coefficient of
relative risk aversion

u” (¢)c

w@):9>0

® Because of this, these CES preferences are sometimes known as CRRA
|constant relative risk aversion| preferences.

® This functional form has the special property that attitudes to risk 6 are
bound up with attitudes to deterministic intertemporal substitution 1/6,
even though these are intrinsically distinct concepts.

15



Outline

2. Neoclassical growth model: planning problem



Neoclassical Growth Model: Planning Problem

® Discrete time t =0,1,2,...
® To fix ideas, special case with L; = L and A; = A.

® Aggregate production function
Y; = F(K:, AL)
® (Goods may be either consumed or invested
Cr+1; =Y,

® (Capital accumulation

Kiv1=(1-60)K¢ + Iy, 0<d <1, Ko >0
® (Gives the sequence of resource constraints, one for each date

Ci + Kiy1 = F(Ky, AL) 4+ (1 — §) Ky, Ko >0
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Neoclassical Growth Model: Planning Problem

® Planner seeks to maximize utility of L identical households
- C
Zﬁtu(ft)l), 0<p<l1
t=0

subject to sequence of resource constraints, one for each date

Ct—|—Kt_|_1 :F(Kt,AL)+(1—5)Kt, K() > O

® REMARKS. Usual interpretation is that this is a benevolent planner
seeking to maximize the households’ own (identical) utility function.

Can construct a ‘representative agent’ in a broad range of settings, using
the second welfare theorem, but then may lose some normative appeal.

Infinite horizon keeps the model stationary, no life-cycle effects.
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Neoclassical Growth Model: Planning Problem

® Let ¢; = Ct/L denote consumption per household, k; = K;/L etc.

® Planner chooses stream ¢ of consumption per household to maximize
Ul) =) Bule), 0<p<1
t=0

subject to sequence of resource constraints, one for each date

Ct + kt_|_1 = f(]ft) + (1 — 5)]€t, ko > 0

® REMARKS. Intensive form of the production function f(k) = F'(k, A).

Other than the infinite horizon, this is a standard concave problem.
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Neoclassical Growth Model: Planning Problem

® Lagrangian with multiplier A; > 0 for each resource constraint

L=> Blulce) + Y Ne[flke) + (1= ke — ¢ — kg

® Key first order conditions, hold at each date

Ct . ﬁtu’(ct) — )\t =0
k‘t_|_1 . _)\t + )\t—l—l [f/(kt_|_1) + 1 — 5} =0
)\t . f(k‘t) + (1 — 5)k’t — Ct — kt_|_1 =0

® Transversality condition, analogous to k71 = 0 in finite horizon problem

lim )\TkT—H =0
T — o0
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Consumption Euler Equation Revisited

¢ Eliminating the multipliers, we get a consumption Euler equation

u'(cr) = Bu(csr) | f /(K1) +1 6|

~~

th+17

® Marginal rate of transformation (MRT) between ¢ and ¢t + 1
fllkepr) +1=96

® Marginal rate of substitution (MRS) between ¢t and ¢ + 1

u'(ct)

5U/(Ct+1)

® Planner equates MRS and MRT. Supported by shadow prices
At
At 11

20



Planner Equates Intertemporal MRS and MRT

Ct+1
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Dynamical System

® (Gives a system of two nonlinear difference equations in ¢, k;

w'(cr) = Bu'(coq1) [ f (k1) +1 =)

and

Ct + ]{Tt_|_1 — f(k’t) + (1 — 5)]{15

® Two boundary conditions: (i) kg > 0 and (ii) transversality condition

lim A" (cr)kryr =0
T—00
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Outline

2. Neoclassical growth model: planning problem
Steady state
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Steady State

® Steady states are fixed points of the form c;y1 = ¢; and ki1 = ks.

® Let c*, k™ denote steady state values. These are uniquely determined by
L=B[f/ () +1-06] &  fH)=p+0

and

¢t = f(k*) — ok

® Steady state Euler equation first pins down k*.

® Given steady state k*, resource constraint then determines c*.
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Modified Golden Rule

® Let C(k) denote hypothetical steady state ¢ given steady state k

That is, {(c, k) : c=C(k)} is the set of points such that k; 11 = k.

® Note that C(k) is maximized at the ‘golden rule’ level, where

fi(kép) =0

e Now have a ‘modified golden rule’. Steady state capital determined by

f'(E*) =p+96

e Since f"”(k) < 0 and p > 0, steady state capital is less than the golden
rule level. Earlier consumption is preferred to later consumption.
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Steady State Saving Rate

® Let s* denote the steady state saving rate.

® Since savings equals investment, the steady state saving rate is

. 6k 5 fR)k
oyt p+6 f(k)

S

® EXAMPLE. Suppose f(k) = k“A'~*. Recall in this case s, = a so

0 0

S :—p—|—5a:p—|—58GR

® Of course saving is in general time-varying outside steady state.



Outline

2. Neoclassical growth model: planning problem

Transitional dynamics



Transitional Dynamics

® Consumption dynamics

Ct41 > Ct p— kt_|_1 < k¥

® (Capital dynamics

]Ct_|_1 > ky = Ct < C(k’t)

® Partitions c;, k; space into four regions.

® Use phase diagram in ¢, k; space to analyze dynamics.
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Phase Diagram

consumption, ¢

Ac =10

C(k) = f(k) — ok

—

Ak =0

k,*

capital, k
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Saddle Path

e Capital kg is pre-determined (historically given) at date ¢t = 0

® Consumption ¢y not pre-determined, can take on any value in feasible set
0 < co < f(ko)+ (1 —0)ko

® Dynamics saddle-path unstable. Almost all trajectories diverge from c*, k*.

® There is a single curve in ¢;, k; space that leads to the steady state, the
stable-arm, which we can write

ct = g(k¢)

(in dynamic programming terms, this is the policy function)

® Initial consumption is the one degree of freedom that can be used to avoid
diverging. Initial consumption jumps to the stable arm

co = g(ko)
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Stable Arm

Ac =0
T stable arm
c = g(k)

O
=
.S
2,
=
=
wn
=
()

s C(k) = f(k) — ok

Cor—-

0 :

0 ko k*

capital, k
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Solving the Model

® Solving the model reduces to finding the function g(k).
® Except in a handful of special cases, no closed form solutions.

® Powerful numerical methods exist to approximate g(k) globally, but
beyond the scope of this course.

® We will look at local dynamics, linear approximations around c*, k™.

® For standard parameterizations, the neoclassical growth model is
‘near-linear’ anyway so not much loss. But not always so innocuous.

® These dynamics are slightly cleaner in continuous time.
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Outline

3. Neoclassical growth model: continuous time
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Continuous Time

® Planner’s problem in continuous time is to choose path of consumption
per household ¢ > 0 to maximize

subject to the flow resource constraint

k() = f(k(t)) — 0k(t) —c(t),  k(0) >0

® (Current-value Hamiltonian for this problem
H(c, k,\) =ulc) + A(f(k) — 6k — ¢
® Recall that the key optimality conditions can be written
H,. =0, Hi = ph — A, Hy =k

along with the transversality condition.
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Hamiltonian H(c, k, \) = u(c) + A(f(k) — 0k — ¢)

® (Calculating the derivatives of the Hamiltonian
He=1u'(c) — N
Hie = A(f'(k) —6)
Hy = f(k) — 0k — ¢

® Hence our system of optimality conditions can be written

u'(c(t)) = Alt)
A(t) = (p = (' (k(1)) = 0)A(®)
k(t) = f(k(t)) — k() — e(t)
along with the transversality condition and given initial condition.

® As usual, reduce this to a system in ¢(t), k(¢) by eliminating the
multipliers. To do this, differentiate the first condition with respect to ¢

u”(c(t))é(t) = A(t)
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Consumption Euler Equation

® Using this to eliminate the multipliers, we get the continuous time
consumption Euler equation

¢(t)

o) —ECO) < (FHB)=6=p),  E) =5
)

where £(c) is the intertemporal elasticity of substitution.

® To streamline notation, from now on we will use restrict attention to the
special case of CES preferences with constant £(c) = 1/6.

e With this simplification
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Dynamical System

® So we have a system of two nonlinear differential equations in ¢(t), k()

sy = O =00

??‘.
/
N )
N—
|

fk(t)) = 0k(t) — c(t)
® Two boundary conditions: (i) £(0) > 0 and (ii) transversality condition

lim e "1/ (¢(T)k(T) =0
T — o0
e Steady state as in discrete time, f/(k*) = p+ ¢ and ¢* = f(k*) — 0k*.

® One given initial condition £(0), initial consumption ¢(0) can jump.

® Now look at dynamics local to steady state.
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Local Dynamics

® Nonlinear system of the form

where

Yi(e, k) = ¢,  Polc, k)= f(k) =0k —c

® Approximate dynamics
(dﬂ):(%mmm %mmm>(cw—ﬁ>
k(t) Labo(c k) pa(c, k) k(t) — k*
where the Jacobian matrix is evaluated at steady state c*, k*.

® Local stability depends on signs of the eigenvalues of this Jacobian.
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Local Dynamics

® (Calculating the elements of the Jacobian

%%(C, k) 3%??1(0, k) 0 k) c*
J — _ 0

%¢2(07 k) %¢2(C7 k) C*,k* _1 p

® In slight abuse of notation, let A\;, Ao denote the eigenvalues of this matrix.

® Eigenvalues characterized by determinant

/! *

det(J) = )\1)\2 =

and trace
tr(J) =AM +X2=p>0

® Hence eigenvalues real and of opposite sign, say
A1 <0< Ao

and so, as anticipated, imply saddle path dynamics.
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Eigenvalues

® Eigenvalues are roots of the characteristic polynomial, here a quadratic

)

0=\ —tr(J)\+det(J) = A — pA + ;

® (Gives

17 *)e* //k* c*
p—\fp? — 4L p+fp? — 4Ll
A = <0<

2 2

= A\

® Both of these roots have an economic interpretation.
® Stable root A1 < 0 controls speed of adjustment to steady state c*, k™.

® Unstable root Ay > 0 gives the slope of the stable arm local to c*, k*, that
is, the slope of the policy function at steady state.
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Method of Undetermined Coeflicients

® Direct approach to solving the linearized dynamics.

® Write out the linear approximation

() = TED gy — ke

and

® Implies a second-order differential equation in k(t), namely

k(t) = k(1) - 8 (k) - e

® Now guess model is solved by a linear law of motion

k() = MNk(t) — k%)

for some coeflicient A to be determined.
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Method of Undetermined Coeflicients

® (Guess implies that

k() = Me(t) = N2 (k(t) — k%)

® So if this guess is to be true, A must satisty

[AQ — pA+ f//(];*)c* } (k(t) —k*) =0

® Has to hold for any value of k(t) — k*, which is only true if

f//(k*)c*

g~V

A2 — pA+

® But this is just the characteristic polynomial again.

® So choose the stable root A = A\; < 0, approximate solution

k(t) = M (k(t) — k%) = k(t) = k* + e (k(0) — k%)
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Stable Arm

® Then recover consumption from linearized resource constaint

k)= Mkt) — k") = ct) == (p— M) (k(t) — k)

® Stable arm is a curve ¢ = g(k) with ¢* = g(k*), so local to steady state

c(t) — ¢ = g' (k") (k(t) — k¥)

® So matching coefficients, the slope of the stable arm local to c*, k* is

gk =p—A1>p>0

® But we calculated tr(J) = p and since tr(J) = A1 + A2 we conclude
g,(k*) =X >0
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True Dynamics

consumption, ¢

¢(t) =0

capital, k
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Local Approximation to True Dynamics

consumption, ¢

¢(t)y =0
c(t) —c* _
— (o~ \) k() — &) o
——
g'(k*)
2(t) — e = p(k(t) — )
k(t) =0
k,*

capital, k
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Zooming In

+20%
Q
=
.S
=y «
C __________________________ —]
=
n
=
Q
o
—20%
—20% k* +20%

capital, k
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Taking Stock

® Have set up and determined basic properties of neoclassical growth model.

® Now need to actually put this to work.
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Next class

® Restriction on preferences needed to ensure balanced growth.

e Applications, examples, extensions.



Homework

® Consider the discrete time neoclassical growth model with u(c) = logc,
full depreciation §d =1, and y = f(k) = k@A™,

® CHECK. Show that the consumption policy function

ct = g(ke) = (1 —aB)f(ke)

satisfies the consumption Euler equation and resource constraint on every
date t, for any given kg > 0, and satisfies the transversality condition.

® (Consider the continuous time neoclassical growth model. Local to the
steady state c*, k* the policy function ¢ = g(k) is approximately

c(t) —c* =g (k") (k@) — k%),  g(E")=A>0

® CHECK. Use the method of undetermined coefficients to show that A > 0
is the unstable root of the local dynamics.
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