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Outline

1. Benchmark quality-ladder model

2. Firm dynamics in a quality-ladder model: Klette-Kortum (2004).

3. Static misallocation: Hsieh-Klenow (2009).

4. Dynamic misallocation in a quality-ladder model: Peters (2020).
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Quality Ladder Model

• Continuous time t � 0.

• Representative household

U =

Z 1

0
e�⇢t logC(t) dt, ⇢ > 0

• Aggregate consumption C(t) depends on

– j 2 [0, 1] continuum horizontally differentiated varieties

– k 2 {0, 1, . . . , J(j, t)} discrete vertically differentiated vintages of j

– state-of-the-art vintage J(j, t) for each horizontal variety j

• Let zk(j) denote quality and xk(j, t) denote quantity of variety j, k.
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Aggregate Consumption

• Instantaneous utility

logC(t) =

Z 1

0
log
h J(j,t)X

k=0

zk(j)xk(j, t)
i
dj

• Note: imperfect horizontal differentiation (elasticity of subs. = 1) but
perfect vertical differentiation (elasticity of subs. = 1).

• Let q > 1 denote the size of the quality step, i.e., for each j

zk(j) = q zk�1(j) k = 1, 2, . . . , J(j, t)

• Choose physical units for each variety so that z0(j) = 1 for all j. Then
simply zk(j) = qk for all j.
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Expenditure

• Let P (t) denote aggregate price index associated with C(t) and let
E(t) = P (t)C(t) denote aggregate expenditure.

• Let k⇤(j, t) denote variety that charges lowest price per unit quality.

• Demand for variety j, k is then

xk(j, t) =

8
>><

>>:

E(t)

pk(j, t)
if k = k⇤(j, t)

0 otherwise

• Aggregate expenditure satisfies the intertemporal Euler equation

Ė(t)

E(t)
= r(t)� ⇢, , Ċ(t)

C(t)
= r(t)� ⇢� Ṗ (t)

P (t)
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Expenditure

• Let E(t) = 1 be the numeraire. Then from the Euler equation

r(t) = ⇢ , Ċ(t)

C(t)
= � Ṗ (t)

P (t)

• And expenditure on variety j, k is

pk(j, t)xk(j, t) =

8
<

:

1 if k = k⇤(j, t)

0 otherwise
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Production

• Wage rate w(t) per unit labor engaged in production.

• Flow profits from production of j, k

⇡k(j, t) = (pk(j, t)� w(t))xk(j, t)

(i.e., it takes one unit of labor to produce one unit of output, x = l)

• Inelastic aggregate labor supply L. Labor may be employed in goods
production LX(t) or in research LR(t)

LX(t) + LR(t) = L
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Pricing

• Consider leader firm with state-of-the-art quality and its closest follower,
one step behind.

• Leader has quality advantage q > 1 over follower.

• Leader charges limit price pk(j, t) = qw(t) to prevent entry.

• In symmetric equilibrium only the state-of-the-art quality is sold
k⇤(j, t) = J(j, t), and all leaders have flow profits

⇡J(j,t)(j, t) = (pJ(j,t)(j, t)� w(t))⇥ xJ(j,t)(j, t) =
q � 1

q
=: ⇡
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Innovation and Entry

• Any firm can target any product line in an attempt to improve
state-of-the-art.

• Technology for innovation: Choose Poisson arrival rate � � 0 for new
quality step at cost c� in units of labor.

• Let V (t) denote the value of an incumbent firm, to be determined.

• Free-entry complementary slackness condition

V (t)  cw(t), and
h
V (t)� cw(t)

i
� = 0

so that V (t) = cw(t) whenever � > 0.

• Remark. In this simple model, will turn out that, in equilibrium,
incumbent firms will not innovate to get more than 1 quality step ahead.
But this is not generally true, as we will see.
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Bellman Equation for Incumbents

• Flow profits ⇡.

• Lose incumbency to successful innovator with arrival rate �.

• Value V (t) satisfies continuous time Bellman equation

(r + �)V (t) = ⇡ + V̇ (t)

• Remark. No aggregate risk, all idiosyncratic risk perfectly diversified.
Also implicitly assuming, as will be true in equilibrium, that � is constant.
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Balanced Growth Path

• Focus on a balanced growth path, characterized by constants

(V ⇤ , �⇤ , w⇤)

• Value for incumbents, from steady-state of Bellman equation with r = ⇢

V =
⇡

⇢+ �
, ⇡ =

q � 1

q

for some � to be determined.

• Labor market clearing
LX + LR = L

with total labor employed in each sector

LX =
1

qw
, and LR = �c
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Free Entry Condition V  wc

• Case 1: � > 0 (innovation). Then V = wc and we can write the labor
market clearing condition

(⇢+ �)c

q⇡
+ �c = L

or
�⇤ = ⇡

L

c
� ⇢

q

from which we can then recover V ⇤ = ⇡/(⇢+ �⇤) and w⇤ = V ⇤/c.

• Case 2: � = 0 (no innovation). Then LR = 0, LX = L and so
w⇤ = 1/qL, V ⇤ = ⇡/⇢.

• Remark. Balanced growth path with innovation exists if q-steps

q > 1 + ⇢
c

L

(i.e., if large population, low discount rate, or low innovation cost etc)
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Aggregate Consumption

• Recall aggregate consumption index

logC(t) =

Z 1

0
log
h J(j,t)X

k=0

qk xk(j, t)
i
dj

using zk(j, t) = qk for all j, t.

• In equilibrium only latest vintage sold, i.e., xk(j, t) = 1/qw(t) for
k = J(j, t) and zero otherwise. Hence

logC(t) = (log q)

Z 1

0
J(j, t) dj � log(q w(t))
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Aggregate Growth

• Use LLN to calculate cross-sectional average
Z 1

0
J(j, t) dj = E[J(t)]

where J(t) is a Poisson process with intensity �⇤, so

E[J(t)] = �⇤t

• Hence along a balanced growth path with w(t) = w⇤, aggregate growth is

g⇤ ⌘ Ċ(t)

C(t)
= (log q)�⇤
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Real Wage

• Along balanced growth path, wage w⇤ is a constant.

• But real wage w⇤/P (t) is growing. Recall that

1 = E(t) = P (t)C(t)

so

� Ṗ (t)

P (t)
=

Ċ(t)

C(t)
= g⇤

• Hence real wage is growing at g⇤ too.

• Remark. All growth is due to quality upgrading.
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Aggregate Growth

• If interior equilibrium

g⇤ = (log q)�⇤ where �⇤ = ⇡
L

c
� ⇢

q

• So in this case g⇤ is

– increasing in q (directly, and indirectly via �⇤)
– increasing in L (scale effect)
– increasing in ⇡ (monopoly profits from successful innovation)

– decreasing in c (barrier to entry/cost of innovation)
– decreasing in ⇢ (greater impatience)

• Otherwise, namely if q < 1 + ⇢c/L, then corner equilibrium with �⇤ = 0
and hence g⇤ = 0 etc.
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Outline

1. Benchmark quality-ladder model

2. Firm dynamics in a quality-ladder model: Klette-Kortum (2004).

3. Static misallocation: Hsieh-Klenow (2009).

4. Dynamic misallocation in a quality-ladder model: Peters (2020).
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Klette/Kortum: Stylized Facts

1. Productivity and R&D positively correlated across firms, but productivity growth not
strongly correlated with firm R&D.

2. Patents and R&D positively correlated, both in the cross-section of firms and over-time
for a given firm.

3. R&D intensity uncorrelated with firm size.

4. R&D intensity is highly skewed across firms; many firms do zero R&D.

5. Differences in R&D intensity across firms very persistent.

6. Firm-level R&D investment follows geometric random walk.

7. Size distribution also highly skewed.

8. Smaller firms have low survival probability, but those that do survive grow faster than
large firms. Among large firms, growth independent of firm size.

9. Variance of growth rates higher for smaller firms.

10. Younger firms are small, have low survival probability, but those that survive grow
faster than older firms. Market share of a cohort declines with age.
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Klette/Kortum: Model Overview

• Continuous time t � 0.

• Firm size n follows discrete stochastic birth/death process

– births: new products added when innovation is successful

– deaths: products lost when competing firms innovate

• No natural size of a firm.

• Firms can grow unboundedly large, but takes time and luck.

• Firms that hit a string of bad luck exit.
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Innovation

• Innovation production function

I = G(R,n)

where I is innovation rate, R is R&D effort, n current size.

• Innovation technology G(R,n) is

– strictly increasing in R and n
(existing knowledge capital facilitates innovation)

– strictly concave in R

– homogenous degree one in R and n
(neutralizes effect of firm size on innovation)

• Use homogeneity to write as

R = nc(�)

where � ⌘ I/n is innovation intensity (cf., quality ladders).
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Value of a Firm

• Product line gives constant profit flow ⇡ 2 (0, 1).

• Let Vn denote value of firm with n products, V0 = 0 (exit).

• Bellman equation for firm with n > 0 products, on balanced growth path

rVn = max
�

h
⇡n� c(�)n+ �n(Vn+1 � Vn)� µn(Vn � Vn�1)

i

with interest rate r > 0 and product destruction rate µ > 0

• Value is linear in n, Vn = vn, for some v > 0 to be determined

(r + µ)v = max
�

h
⇡ � c(�) + �v

i

with c0(�) = v for � > 0 [or c0(0) > v and � = 0]. Innovation intensity
independent of firm size, increasing in ⇡, decreasing in r, µ.
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Firm Dynamics and Life-Cycle

• Let pn(t) denote prob. firm is size n at t given size n0 = 1 at t = 0.

• Law of motion for n � 1 products

ṗn(t) = (n� 1)�pn�1(t) + (n+ 1)µpn+1(t)

� n(�+ µ)pn(t)

• Firms with no products exit, n = 0 is an absorbing state

ṗ0(t) = µp1(t)
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Firm Dynamics and Life-Cycle

• Solving the system of differential equations gives

p0(t) =
µ

�
�(t), �(t) ⌘ �� �e�(µ��)t

µ� �e�(µ��)t

and

p1(t) = [1� p0(t)][1� �(t)], pn(t) = pn�1(t)�(t) for n = 2, 3, ...

• Geometric distribution conditional on survival

pn(t)

1� p0(t)
= [1� �(t)]�(t)n�1, n = 1, 2, ...
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Firm Dynamics and Life-Cycle

• Firms eventually exit, limt!1 p0(t) = 1.

• Geometric distribution with parameter �(t) increasing in t

– distribution grows stochastically over time

– conditional on survival, mean and variance of size increase with t

• Firm with n products at t behaves as if n independent firms each of size 1.

• Larger firms have smaller exit hazard.
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Aggregation

• Let Mn(t) denote measure of size n firms at date t and let

M(t) ⌘
1X

n=1

Mn(t)

• Unit mass of products, each product produced by exactly one firm

1 =
1X

n=1

nMn(t)

• Total innovation rate by incumbents

1X

n=1

I(n)Mn(t) =
1X

n=1

�nMn(t) = �

independent of size distribution of firms
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Industry Equilibrium

• Unlimited potential entrants. If entrants have innovation rate ⌘, total
product destruction rate is

µ = �+ ⌘

• Pay sunk cost ke > 0 to enter, gives Poisson arrival rate 1 of entering with
n = 1 products. Free-entry complementary slackness condition

v  ke, and
⇥
v � ke

⇤
⌘ = 0

• Recall incumbents’ first order condition c0(�) = v, so whenever ⌘ > 0 this
pins down R&D intensity, �⇤ that solves

c0(�⇤) = v = ke

• Then from the incumbent’s Bellman equation

(r + µ)v = (⇡ � c(�) + v�) ) ⌘⇤ =
⇡ � c(�⇤)

ke
� r

(or ⌘⇤ = 0 if the last is negative, in which case v < ke)
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Size Distribution

• Given these solutions for � and ⌘, µ = �+ ⌘ we can compute the size
distribution as follows.

• Law of motion is, for n = 1,

Ṁ1(t) = ⌘ + 2µM2(t)� (�+ µ)M1(t)

• Similarly for n = 2, 3, ...

Ṁn(t) = (n� 1)�Mn�1(t) + (n+ 1)µMn+1(t)� n(�+ µ)Mn(t)

• And, by our adding up condition, the total measure M(t) follows

Ṁ(t) = ⌘ � µM1(t)
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Size Distribution

• Find stationary distribution, by setting time derivatives to zero.

• From the adding up condition

M1 = ⌘/µ

• Plugging into the law of motion for n = 1 and solving for M2

M2 = ((�+ µ)M1 � ⌘)/2µ = �⌘/(2µ2)

• And so on, by induction

Mn =
�n�1⌘

nµn
=

✓

n

✓
1

1 + ✓

◆n

, ✓ ⌘ ⌘/�

(for � > 0, ⌘ > 0)
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Size Distribution

• Total mass of firms

M =
1X

n=1

Mn =
1X

n=1

✓

n

✓
1

1 + ✓

◆n

= ✓ log

✓
1 + ✓

✓

◆

• So finally, size distribution Pn ⌘ Mn/M is given by

Pn =
(1/(1 + ✓))n

n log((1 + ✓)/✓)

the logarithmic or log-series distribution with parameter 1/(1 + ✓).

• Endogenously skewed size distribution. Mean given by
1X

n=1

nPn =
1/✓

log((1 + ✓)/✓)

which is decreasing in ✓ ⌘ ⌘/�

– when ✓ small, some firms have time to get very large
– when ✓ large, entry dominates and there are many n = 1 firms
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General Equilibrium

• Horizontal varieties j 2 [0, 1].

• Inelastic supply of aggregate labor

L = LX + LS + LR

LX producing goods, LS in research at ‘startups’ trying to enter,
LR in research at incumbent firms.

• Labor requirements for research

lS researchers for size 0 firm (entrant) to innovate at rate 1
(i.e., sunk entry cost is ke = wlS for w to be determined)

lR(�) researchers for size 1 firm (incumbent) to innovate at rate �
(i.e., innovation cost function is c(�) = wlR(�) for each n)

assumed strictly increasing, strictly convex in �
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Stochastic Quality Ladders

• Each innovation (by new or incumbent) is quality improvement to
randomly drawn variety j 2 [0, 1].

• Improvements arrive with endogenous Poisson intensity µ.

• Let J(j, t) denote number of improvements that have hit j at time t, this
is Poisson with intensity µt.

• Let zk(j) denote the quality of the k’th vintage of variety j

1 ⌘ z0(j) < z1(j) < · · · < zk(j) < · · · < zJ(j,t)(j)

• Quality step is random (not constant)

qk(j) ⌘
zk(j)

zk�1(j)
> 1, q ⇠ IID (q)
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Preferences and Expenditure

• Representative household

U =

Z 1

0
e�⇢t logC(t) dt

• As before, varieties j 2 [0, 1] are imperfect (Cobb-Douglas) substitutes
while vintages k 2 {0, . . . , J(j, t)} are perfect substitutes

logC(t) =

Z 1

0
log
h J(j,t)X

k=0

zk(j)xk(j, t)
i
dj

• In equilibrium only highest quality vintage is sold, limit price

p(j, t) = wq(j, t), q(j, t) ⌘ qJ(j,t)(j)

• Take aggregate expenditure as numeraire, P (t)C(t) = E(t) = 1. Then
expenditure on each variety is

1 = p(j, t)x(j, t) ) x(j, t) ⌘ x(J(j, t), t) =
1

wq(j, t)
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Profits

• Flow profit per variety j is then

⇡(j, t) = (p(j, t)� w)x(j, t) =
q(j, t)� 1

q(j, t)

• Quality step distribution  (q) implies profit distribution  (q�1(⇡)).

• Previous analysis goes through replacing ⇡ with average profits

⇡̄ =

Z 1

0

h
1� q(j, t)�1

i
dj = 1�

Z 1

1
q�1 d (q)
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Aggregate Growth

• Aggregate rate of innovation

µ⇤ = �⇤ + ⌘⇤

• Aggregate growth rate of consumption (and real wage etc)

g⇤ = µ⇤ log q̄, log q̄ ⌘
Z 1

1
log q d (q)

• Simple comparative statics

– increasing in labor force L and in average profits ⇡̄

– decreasing in impatience ⇢ and in entry labor requirement lS

(here presuming an ‘interior’ steady state with entry, LS > 0, etc)

• Tractable merger of quality-ladder model with non-trivial firm dynamics.
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Misallocation
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Outline

1. Benchmark quality-ladder model

2. Firm dynamics in a quality-ladder model: Klette-Kortum (2004).

3. Static misallocation: Hsieh-Klenow (2009).

4. Dynamic misallocation in a quality-ladder model: Peters (2020).
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Hsieh/Klenow: Overview

• Background: large aggregate TFP differences across countries

– US manufacturing TFP 2.3⇥ China (in 1996)
– US manufacturing TFP 2.6⇥ India

• Why is aggregate TFP so low compared to the US?

– traditional explanations focus on barriers to technology diffusion

– misallocation explanation focuses on inefficient use of technologies

(e.g., licensing regulations, size-dependent policies, SOEs, markups)

• Main findings

– quantify misallocation from gaps in marginal products
– larger gaps in China and India than US
– can account for about half of aggregate TFP differences
– shrinking gaps in China but not India
– large plants have large marginal products in China and India
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Model

• Final output Y a Cobb-Douglas aggregate of industry output

log Y =
SX

s=1

✓s log Ys

• Industry output a CES aggregate of Ms differentiated products

Ys =

 
MsX

i=1

Y
��1
�

is

! �
��1

, � > 1

• Firms produce with a Cobb-Douglas aggregate of capital and labor

Yis = AisK
↵s
is L1�↵s

is , 0 < ↵s < 1 for each s = 1, ..., S
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Distortions

• Firm-specific (idiosyncratic) distortions.

• Individual firm faces two types of distortions

(i) ⌧Y,is distortions to marginal product of capital and labor

(ii) ⌧K,is distortions to marginal product of capital relative to labor

• Profits for an individual firm

⇡is = (1� ⌧Y,is)PisYis � wLis � (1 + ⌧K,is)rKis

• Distortions to labor can be obtained as combinations of ⌧Y,is and ⌧K,is.
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• Let c(r, w,↵) denote the frictionless Cobb-Douglas factor price index

c(r, w,↵) =
⇣ r
↵

⌘↵✓ w

1� ↵

◆1�↵

• With distortions, equilibrium is given by

Pis =
�

� � 1

c(r, w,↵s)

Ais

(1 + ⌧K,is)↵s

(1� ⌧Y,is)

Yis =

✓
Pis

Ps

◆��

Ys

(1 + ⌧K,is)rKis = ↵s
c(r, w,↵s)

Ais
(1 + ⌧K,is)

↵sYis

wLis = (1� ↵s)
c(r, w,↵s)

Ais
(1 + ⌧K,is)

↵sYis

• Goal is to use this structure to infer distortions from micro data.
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Key to Inference

• Focus on variation over i within s

(i) variation in observed capital/labor ratio reveals ⌧K,is

1 + ⌧K,is =
↵s

1� ↵s
⇥ wLis

rKis

(ii) variation in labor share reveals ⌧Y,is

1� ⌧Y,is =
�

� � 1

✓
1

1� ↵s

◆
⇥ wLis

PisYis

• Residual demand Yis = (Pis/Ps)��Ys so revenue share

PisYis

PsYs
=

✓
Yis

Ys

◆��1
�

• Given an estimate of elasticity �, can infer quantities from revenues.
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TFPQ vs. TFPR

• We are interested in physical productivity Ais but we can typically only
measure revenue productivity

• Let TFPQ denote physical productivity and TFPR denote revenue
productivity. Define them as follows

TFPQis ⌘
Yis

K↵s
is L1�↵s

is

= Ais

TFPRis ⌘
PisYis

K↵s
is L1�↵s

is

= PisAis

• In the efficient benchmark, TFPQ naturally varies across firms with Ais

but TFPR would be constant across firms (higher productivity firms
charging proportionately lower prices).

• With distortions, firm-level TFPR is

PisAis =
�

� � 1
c(r, w,↵s)

(1 + ⌧K,is)↵

1� ⌧Y,is
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Distribution of TFPQ (= Ais)

Distributions for most recent year. Small firms underreported in Chinese data so US and
India better comparison. Many more small plants in India.
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Distribution of TFPR (= PisAis)

All expressed relative to aggregate TFPR (= PsAs). Suggestive of larger distortions in India
and China as compared to US.
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Sources of TFPR Variation Within Industries

For example, ownership accounts for only 0.6% of the variance in India but about 5% in
China. Ownership and age account for 1.3% in India and 6.2% in China, etc.

How large would the aggregate gains be if the cross-sectional allocation was more efficient?
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TFP Gains from Equal TFPR Within Industries

Gains from equalizing TFPR across all plants within each industry. Gains have been falling
in China, suggesting actual distribution has been improving over time. Not so for India (and
the US), at least in this sample.
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Distribution of Plant Size (= Value-Added)

Efficient distribution has more dispersed plant size, fewer middle but more large and more
small plants.
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TFP gains from Equal TFPR, Relative to US

Gains from moving to “1997 US efficiency” (lowest US efficiency). Aggregate manufacturing
TFP differences based on Penn World Tables suggest US TFP in 1998 was 2.3 times China
and 2.6 times India. So reallocation could account for about log(1.5)/ log(2.3) ⇡ 0.49 of the
difference between China and the US.

Welfare gains would be magnified by endogenous capital accumulation.

The start of a huge literature, in macro, trade, and development.
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Outline

1. Benchmark quality-ladder model

2. Firm dynamics in a quality-ladder model: Klette-Kortum (2004).

3. Static misallocation: Hsieh-Klenow (2009).

4. Dynamic misallocation in a quality-ladder model: Peters (2020).
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Overview

• Motivation

– Hsieh/Klenow (2009) takes marginal product gaps etc as exogenous

– firms with higher TFPR are more ‘constrained’

• Peters (2020) interpretation: misallocation through endogenous markups

– quality ladder model with entry (simplified Klette/Kortum)

– markups depend on productivity gap between incumbent and rivals

– incumbent and entrant innovation determines productivity gaps

– implied markup distribution is Pareto, thicker tails when low entry
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Model

• Continuous time t � 0.

• Quality ladder setup. Final output

log Y (t) =

Z 1

0
log
h J(j,t)X

k=0

yk(j, t)
i
dj

horizontally differentiated intermediate goods j 2 [0, 1], each of which
comes in k 2 {0, 1, . . . , J(j, t)} vertically differentiated vintages.

• Intermediate producers are heterogeneous in productivity.

• Intermediate producer with productivity a has production function

y = ak↵l1�↵, 0 < ↵ < 1

taking input prices r and w as given
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Costs, Pricing and Markups

• Marginal cost of intermediate producer with productivity a

c(r, w)

a

• Most efficient producer takes whole market and limit prices, sets price
equal to marginal cost of second-best producer, the closest rival.

• Hence best producer has price

p1 =
c(r, w)

a2

where a2 is the productivity of the second-best producer.

• Then best producer has markup equal to its relative productivity

m ⌘ p1

c(r, w)/a1
=

a1

a2

• High productivity differential effectively shields from competition.
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Static Allocation

• For intermediate good j with market taken by a1(j) producer

y(j) =
1

c(r, w)

a1(j)

m(j)
PY, m(j) =

a1(j)

a2(j)

k(j) = ↵
c(r, w)

a1(j)r
y(j) =

1

m(j)

↵

r
PY

l(j) = (1� ↵)
c(r, w)

a1(j)w
y(j) =

1

m(j)

(1� ↵)

w
PY

⇡(j) =
⇣
p(j)� c(r, w)

a1(j)

⌘
y(j) =

⇣m(j)� 1

m(j)

⌘
PY

• But still need to determine distribution of relative productivities.
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TFPR

• Physical productivity of a producer is just a1(j).

• Revenue productivity is

p(j)a1(j) = c(r, w)m(j)

• Since c(r, w) is common, all cross-sectional variation in TFPR is coming
from markup variation (i.e., relative productivity variation).

• Remark. In Hsieh/Klenow all cross-sectional variation in TFPR is
coming from (⌧K , ⌧Y ) variation and high TFPR indicates more distorted
(‘constrained’) firms.

But here, high TFPR indicates firms with high relative productivity.
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Aggregation

• Define aggregate productivity by

A ⌘ Y

K↵L1�↵

where K and L are aggregate capital and labor used in production.

• Summing input demands over intermediate producers

K =

Z 1

0
k(j) dj =

↵

r
PY

Z 1

0

1

m(j)
dj

L =

Z 1

0
l(j) dj =

1� ↵

w
PY

Z 1

0

1

m(j)
dj
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Aggregate TFPR

• Taking the geometric average of K and L

K↵L1�↵ =
⇣↵
r

⌘↵✓1� ↵

w

◆1�↵✓Z 1

0

1

m(j)
dj

◆
PY

where the coefficient out the front is just 1/c(r, w).

• Hence aggregate TFPR is

PA =
PY

K↵L1�↵
= c(r, w)

✓Z 1

0

1

m(j)
dj

◆�1

• Need to decompose this into P and A using price index.
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Aggregate Price Index P

• With Cobb-Douglas preferences over the intermediates

logP =

Z 1

0
log p(j) dj

(this is the limit of the usual CES index as � ! 1+)

• Plugging in for individual prices

logP =

Z 1

0
log
⇣
m(j)

c(r, w)

a1(j)

⌘
dj

or

P = c(r, w) exp

✓Z 1

0
log
⇣m(j)

a1(j)

⌘
dj

◆
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Aggregate Productivity A

• Hence we can write aggregate productivity as

A =

exp

✓Z 1

0
log
�a1(j)
m(j)

�
dj

◆

Z 1

0

1

m(j)
dj

= A⇤D,

product of benchmark productivity A⇤ and distortion index D.

• Benchmark productivity (first-best productivity)

A⇤ ⌘ exp

✓Z 1

0
log a1(j) dj

◆

• Distortion index

D ⌘ exp

✓
�
Z 1

0
logm(j) dj

◆.Z 1

0

1

m(j)
dj
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TFP Distortion Index

• Write the TFP distortion index as

D =
exp

⇣
� E[ logm ]

⌘

E[ 1/m ]

• By Jensen’s inequality D  1 and = 1 only if m degenerate.

• Is homogeneous degree zero in m: A pure level shift in markups does not
reduce aggregate productivity.

• Is decreasing in a mean-preserving-spread of logm: More dispersed
markups do reduce aggregate productivity.
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Quality Ladder Dynamics

• Firm productivity follows ladder with constant step-size q > 1.

• If producer has had n(j, t) innovations at t, their productivity is

a(j, t) = qn(j,t)

• Markup is therefore

m(j, t) =
a1(j, t)

a2(j, t)
=

qn
1(j,t)

qn2(j,t)
= q�(j,t), � ⌘ n1 � n2 � 1

• Entry gives access to the current leading technology

qa1(j, t)
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Innovation and Markups

Note contrast:

• Incumbent innovation: increases a1 relative to a2, increases markup by
factor q > 1.

• Entrant innovation: decreases markup, by factor q��1.

• Innovating incumbent may be multiple steps ahead, innovating entrant is
only one step ahead.
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Quality Gap Dynamics

• Let � denote incumbent innovation rate and let ⌘ denote entry rate (both
endogenous, will be constant along balanced growth path).

• Let M(�, t) denote measure of intermediates with quality gap �.

• Law of motion

Ṁ(�, t) = �(⌘ + �)M(�, t) + �M(�� 1, t), for � � 2

and

Ṁ(1, t) = �(⌘ + �)M(1, t) + ⌘
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Stationary Quality Gap Distribution

• Setting Ṁ(�, t) = 0 for each � we have

M(1) =
⌘

⌘ + �

and
M(�) =

�

⌘ + �
M(�� 1), for � � 2

• Iterating backwards we get

M(�) =

✓
�

⌘ + �

◆��1 ⌘

⌘ + �

=

✓
�

⌘ + �

◆� ⌘

�
=

✓
1

1 + ✓

◆�

✓, ✓ ⌘ ⌘

�

59



Quality Gaps and Markup Distribution

• Cumulative quality gap distribution

F�(n) ⌘ Prob[�  n] =
nX

k=1

M(k) = 1�
✓

1

1 + ✓

◆n

• Markup distribution is Pareto

F (m) ⌘Prob[q�  m] = Prob[�  logm/ log q]

= 1�m�⇠(✓), ⇠(✓) ⌘ log(1 + ✓)

log q

with Pareto tail parameter ⇠(✓) given by entry intensity ✓ ⌘ ⌘/� (rate of
entrant to incumbent innovation, as in Klette/Kortum above).
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Distortion Index D ⌘ exp
⇣
� E[logm]

⌘
/E[1/m]

• Approximate moments, treating markups as continuous

E[1/m] ⇡
Z 1

1
(1/m) dF (m) =

Z 1

1
(1/m)⇠(✓)(1/m)⇠(✓)+1 dm =

⇠(✓)

⇠(✓) + 1

E[logm] ⇡
Z 1

1
(logm) dF (m) =

Z 1

0
z exp(�⇠(✓)z) dz =

1

⇠(✓)

• Gives distortion index

D(✓) ⇡ exp
⇣
� 1

⇠(✓)

⌘⇠(✓) + 1

⇠(✓)

• Remark. Can compute exact moments using discrete distribution of
gaps �, but messier.
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Effects of Higher Entry

• A higher entry intensity ✓ = ⌘/�

– reduces F (m) in FOSD sense (F (m) increasing in ✓ for all m)

– increases ⇠(✓) and hence reduces markup dispersion

– reduces wedge between A and first-best A⇤, thereby increasing aggregate
productivity

– reduces wedge between factor prices and marginal products

• Now need to actually pin down innovation rates ⌘,�
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Innovation and Entry Costs

• Convex innovation cost function for incumbents

c(�,�) = q���� , � > 1

• This is the amount of labor required for an incumbent with advantage �
to generate flow innovation rate �.

• Workers generate ideas with Poisson intensity 1 (normalization),
‘blueprint’ operational after paying startup lS > 0 units of labor
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Bellman Equation for Incumbents

• Focus on a balanced growth path with growth g, to be determined.

• Let V (�) denote the (detrended) value of a firm with quality gap �. This
can be written

(r + ⌘)V (�) = ⇡(�) + max
��0

h
�(V (�+ 1)� V (�))� wq����

i
+ gV (�)

• Can show that, along BGP, value function V (�) has the form

V (�) = v0 � v1q
��

for some constants v0, v1 to be determined.
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General Equilibrium

• Representative consumer with preferences over final good

U =

Z 1

0
e�⇢t logC(t) dt

• Along BGP we then have
r = ⇢+ g

• With constant quality step q and constant innovation rates

g =
1

1� ↵
(log q)(�+ ⌘)

• To complete the solution of the model, need to solve for aggregate �, ⌘ etc.

65



General Equilibrium

• Problem can be reduced to finding constants

(⌘⇤ , w⇤)

consistent with firm optimization, i.e., v0(⌘, w), v1(⌘, w),�(⌘, w), and

(i) free entry condition

V (1) = (v0 � v1q
�1)  wlS

(ii) labor market clearing
LX + LR + LS = L

• Compute equilibrium by solving fixed point problem in ⌘, w.

• Then implies innovation intensity �⇤ = �(⌘⇤, w⇤) etc.
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Calibrated Markup Distribution
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Application to Indonesian Manufacturing
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Application to Indonesian Manufacturing
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Application to Indonesian Manufacturing
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Related Work

• If you find this work on endogenous markups interesting:

� Edmond, Midrigan and Xu (2015) Competition, Markups, and the Gains

from International Trade AER.

(do reductions in trade barriers imply large ‘pro-competitive’ productivity
gains from reduced misallocation? )

� Edmond, Midrigan and Xu (2021) How Costly Are Markups? JPE r&r.

(how large are the welfare costs of markup distortions? macro model
calibrated to US census micro data)
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Thanks!
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