

Macroeconomics Tutorial #3

1. Cake-eating. Consider the problem of choosing consumption c_t for t = 0, 1, ... to maximize

$$\sum_{t=0}^{\infty} \beta^t u(c_t), \qquad 0 < \beta < 1 \tag{1}$$

subject to the constraints

 $c_t \ge 0, \qquad k_{t+1} \ge 0, \qquad c_t + k_{t+1} = k_t, \qquad t = 0, 1, \dots$

with given initial condition

 $k_0 > 0$

Suppose that period utility has the isoelastic form

$$u(c) = \frac{c^{1-\sigma} - 1}{1 - \sigma}, \qquad \sigma > 0$$

- (a) Consider a recursive formulation of this problem and let v(k) denote the value function and let c(k) denote the consumption policy function. Setup and explain the Bellman equation that determines these functions.
- (b) Solve for c(k). Using this solution, explain the time paths of c_t and k_t starting from the given initial condition k_0 . Explain how your answers depend on the parameters β and σ . Give intuition for your results.
- 2. Borrowing and lending. Consider a risk neutral consumer choosing consumption c_t for t = 0, 1, ... to maximize

$$\sum_{t=0}^{\infty} \beta^t c_t, \qquad 0 < \beta < 1 \tag{2}$$

The consumer can borrow or lend freely at gross interest rate $R = 1/\beta$ and so faces the sequence of constraints

$$0 \le c_t \le a_t - \beta a_{t+1}, \qquad t = 0, 1, \dots$$

with given initial wealth a_0 . The interpretation here is that $a_t > 0$ means the consumer is a net lender but $a_t < 0$ means the consumer is a net borrower. To begin with, suppose that there are no constraints on borrowing so that $a_t < 0$ is permitted.

- (a) Let $v^*(a_0)$ denote the solution of the sequence problem (maximizing (2) subject to the sequence of constraints $0 \le c_t \le a_t \beta a_{t+1}$) and let v(a) denote the value function that solves the associated Bellman equation. Do the solutions coincide, i.e., does $v(a_0) = v^*(a_0)$? Why or why not?
- (b) Now suppose that we prohibit borrowing, that is we add the constraint $a_{t+1} \ge 0$. How if at all does this change your answer to (a)?