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Tutorial #1: Solutions

1. To be done in class.

2. Finite-horizon optimal growth model. Consider a discrete-time finite-horizon optimal

growth model where the planner chooses capital stocks kt+1 for t = 0, 1, . . . , T to maximize

TX

t=0

�tu(ct), 0 < � < 1

subject to the sequence of resource constraints

ct + kt+1  f(kt), t = 0, 1, . . . , T

with given initial condition

k0 > 0

To begin with, assume the utility and production functions satisfy u0
(c) > 0, u00

(c) < 0 and

f 0
(k) > 0, f 00

(k) < 0 with u0
(0) = f 0

(0) = +1 and f(0) = 0.

(a) Show that the solution to this problem is characterized by the sequence of conditions

u0
(f(kt)� kt+1) = � u0

(f(kt+1)� kt+2) f
0
(kt+1), t = 0, 1, . . . , T � 1 (⇤)

along with

kT+1 = 0

Explain how these conditions pin down the sequence of capital stocks that solve the plan-

ning problem given the initial k0 > 0.

Now suppose in particular that u(c) = log c and f(k) = k↵
for 0 < ↵ < 1.

(b) Show that the sequence of capital stocks

kt+1 = ↵�
1� (↵�)T�t

1� (↵�)T�t+1
k↵
t , t = 0, 1, . . . , T

satisfies the optimality conditions in part (a) above.

(c) Consider the limit T ! 1. Show that in this limit we have

kt+1 = ↵� k↵
t , ct = (1� ↵�) k↵

t

for given k0 > 0. Interpret these formulas in terms of the usual phase diagram for the

discrete-time infinite-horizon optimal growth model.
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Solutions:

(a) The Lagrangian for this problem can be written

L =

TX

t=0

�tu(ct) +
TX

t=0

�t[f(kt)� ct � kt+1]

Since u(c) and f(k) are strictly concave, this is a well-behaved finite dimensional optimiza-

tion problem and its solution is completely characterized by the Kuhn-Tucker conditions.

The key first order conditions for this problem are, for consumption,

ct : �tu0
(ct)� �t  0, t = 0, 1, . . . , T

(with strict equality whenever ct > 0), and for capital,

kt+1 : ��t + �t+1f
0
(kt+1)  0, t = 0, 1, . . . , T

(with strict equality whenever kt+1 > 0). Likewise for the multipliers

�t : f(kt)� ct � kt+1 � 0, t = 0, 1, . . . , T

Since u0
(c) > 0 for all c the resource constraint will always bind so that ct = f(kt)� kt+1

for all t = 0, 1, . . . , T (all resources are used) and the associated multipliers �t are strictly

positive. Likewise, since u0
(0) = +1, the first order condition for consumption will always

hold with equality

�tu0
(ct) = �t, t = 0, 1, . . . , T

Since f 0
(0) = +1, the first order condition for capital will hold with equality whenever

�t+1 is positive. We have just seen that �t is positive for all t = 0, 1, ..., T . But what about
�T+1? Well there is no constraint at all at date T + 1 so implicitly �T+1 = 0. Then since

u0
(c) > 0 the planner choose for all resources at date T to be consumed, cT = f(kT ) so

that kT+1 = 0. In short we have

�t = �t+1f
0
(kt+1), t = 0, 1, . . . , T � 1

and

kT+1 = 0

Then since �t = �tu0
(ct) and ct = f(kt)� kt+1 for all t = 0, 1, . . . , T we can write

u0
(f(kt)� kt+1) = �u0

(f(kt+1)� kt+2)f
0
(kt+1), t = 0, 1, . . . , T � 1

which is the Euler equation (⇤). This implicitly describes a nonlinear second order dif-

ference equation in kt. In other words, there is family of solutions and to pin down the

specific sequence kt that solves the optimization problem we need two boundary condi-

tions. These are the given initial condition k0 > 0 (which is a parameter of the problem,

not a choice variable) and the terminal condition kT+1 = 0 (which is a necessary condition

for an optimum). These two boundary conditions then allow us to pick out the specific

solution from the general family of solutions implied by the Euler equation.
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(b) With u(c) = log c and f(k) = k↵
the Euler equation (⇤) becomes

1

k↵
t � kt+1

= �
1

k↵
t+1 � kt+2

↵k↵�1
t+1 , t = 0, 1, . . . , T � 1

which can be written as simply
ct+1

ct
= ↵�k↵�1

t+1

Using the conjectured law of motion for kt+1 we have that

ct = k↵
t � kt+1 =

✓
1� ↵�

1� (↵�)T�t

1� (↵�)T�t+1

◆
k↵
t

=

✓
1� (↵�)T�t+1 � ↵� + ↵�(↵�)T�t

1� (↵�)T�t+1

◆
k↵
t

=
1� ↵�

1� (↵�)T�t+1
k↵
t

Likewise

ct+1 =
1� ↵�

1� (↵�)T�t
k↵
t+1

Hence

ct+1

ct
=

✓
1� (↵�)T�t+1

1� (↵�)T�t

◆✓
kt+1

kt

◆↵

Hence our law of motion for the capital stock solves the Euler equation when

✓
1� (↵�)T�t+1

1� (↵�)T�t

◆✓
kt+1

kt

◆↵

= ↵�k↵�1
t+1

Cancelling common terms and rearranging, this requires

kt+1 = ↵�
1� (↵�)T�t

1� (↵�)T�t+1
k↵
t

Hence the conjectured law of motion for the capital stock indeed solves the Euler equation.

Finally, notice that for t = T we have

kT+1 = ↵�
1� (↵�)0

1� (↵�)1
k↵
T = 0

Hence this conjectured law of motion also respects the terminal condition. In short, this

law of motion solves the planner’s optimization problem.

(c) Since (↵�) 2 (0, 1), in the limit as T ! 1, terms like (↵�)T�t ! 0 (for each t) in the law

of motion for the capital stock. In particular, we get

kt+1 = ↵� lim
T!1

⇢
1� (↵�)T�t

1� (↵�)T�t+1

�
k↵
t = ↵�

⇢
1� 0

1� 0

�
k↵
t = ↵� k↵

t
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Likewise for consumption

ct = lim
T!1

⇢
1� ↵�

1� (↵�)T�t+1

�
k↵
t =

⇢
1� ↵�

1� 0

�
k↵
t = (1� ↵�) k↵

t ⌘ c(kt)

In terms of our usual phase diagram, this function c(kt) is the stable arm of the saddle

path and c0 = c(k0) is the initial jump that consumption makes to put the economy on a

trajectory that converges to steady state. Notice that this system is exactly log-linear

log kt+1 = log(↵�) + ↵ log kt

So the coe�cient ↵ 2 (0, 1) here corresponds to the stable eigenvalue.


