
ECON90003

Chris Edmond

Macroeconomics
Tutorial #10: Solutions

1. Static Hopenhayn. Firms discount flow profits according to a constant discount factor 0 <
β < 1. There is an unlimited number of potential entrants. On paying an entry cost ke > 0 an
entrant receives a once-and-for-all productivity draw z ∼ g(z) and then makes a once-and-for-all
decision to operate or exit. On paying a fixed operating cost k > 0, a firm that hires n workers
can produce output y = znα for 0 < α < 1. Let w denote the wage and p the price of of their
output. Let w = 1 be the numeraire.

(a) Let n(z; p), y(z; p) and π(z; p) denote the optimal employment policy, output, and profits
of a firm with productivity z when the price is p. Solve for these functions. Let z∗(p)
denote the lowest level of productivity such that a firm does not exit. Solve for z∗(p). How
does z∗ depend on p? Explain.

(b) Let v(z; p) denote the value function of a firm. Solve for v(z; p).

(c) Use the free-entry condition and the cutoff productivity condition to derive the comparative
statics of z∗ and p∗ with respect to k, ke and α. Give intuition for your results.

Now suppose that productivity is drawn from the Pareto distribution with density

g(z) = ξz−ξ−1, z ≥ 1, ξ > 1

(d) Solve explicitly for z∗ and p∗. How do z∗ and p∗ depend on the shape parameter ξ? What
is the productivity distribution of actively producing firms? Explain.

Solutions:

(a) The profit maximization problem for a firm of type z facing competitive price p is

π(z; p) ≡ max
n≥0

[
pznα − n− k

]
(note that w = 1 is the numeraire). The first order condition for this problem is

αpznα−1 = 1

which equates the value of the marginal product of labor to its factor cost. This solves for
the optimal employment policy

n(z; p) = (αpz)
1

1−α
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which is increasing and convex in z. Plugging this back into the profit function

π(z; p) = pzn(z; p)α − n(z; p)− k

= pz (αpz)
α

1−α − (αpz)
1

1−α − k

= (1− α)α
α

1−α (pz)
1

1−α − k

which is likewise increasing and convex in z. The associated level of output is

y(z; p) = zn(z; p)α = z (αpz)
α

1−α = (αp)
α

1−α z
1

1−α

The cutoff productivity z∗(p) is determined by

π(z∗; p) = 0

or equivalently
(1− α)α

α
1−α (pz∗)

1
1−α − k = 0

This solves for

z∗(p) =
( k1−α

αα(1− α)1−α

) 1

p

In short, the higher the price the lower the cutoff productivity — a larger fraction of firms
will find it profitable to operate when the price is high.

(b) Given the once-and-for-all choices, the value function for a firm is

v(z; p) = max
[
0 ,

∞∑
t=0

βtπ(z; p)
]

= max
[
0,
π(z; p)

1− β

]
so that

v(z; p) =
1

1− β

[
(1− α)α

α
1−α (pz)

1
1−α − k

]
, z ≥ z∗(p)

and v(z; p) = 0 for all z < z∗(p).

(c) The free-entry condition can be written

ke = β

∫
v(z; p) g(z) dz

where

β

∫
v(z; p) g(z) dz = β

∫ ∞
z∗

1

1− β

[
(1− α)α

α
1−α (pz)

1
1−α − k

]
g(z) dz

=
βk

1− β

∫ ∞
z∗

[ (1− α)α
α

1−α (pz)
1

1−α

k
− 1

]
g(z) dz

=
βk

1− β

∫ ∞
z∗

[ (1− α)α
α

1−α (pz)
1

1−α

(1− α)α
α

1−α (pz∗)
1

1−α

− 1
]
g(z) dz

=
βk

1− β

∫ ∞
z∗

[ ( z
z∗

) 1
1−α − 1

]
g(z) dz
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where the dependence on p has been substituted out using the zero-profit condition that
defines the cutoff productivity. We can thus write the free-entry condition in terms of a
single unknown, the cutoff z∗

ke =
βk

1− β

∫ ∞
z∗

[ ( z
z∗

) 1
1−α − 1

]
g(z) dz

Now define a composite parameter

θ ≡ ke
k

1− β
β

> 0

and the function

J(x) ≡
∫ ∞
x

[ ( z
x

) 1
1−α − 1

]
g(z) dz

So in these terms the free-entry condition can be written

J(z∗) = θ

which implicitly determines z∗(θ). By the implicit function theorem

J ′(z∗(θ))
dz∗

dθ
= 1

so
dz∗

dθ
=

1

J ′(z∗(θ))

Using Leibnitz’s Rule, the derivative of J(x) is

J ′(x) = −
[ ( x

x

) 1
1−α − 1

]
(1) +

∫ ∞
x

∂

∂x

[ ( z
x

) 1
1−α − 1

]
g(z) dz

= 0 +

∫ ∞
x

∂

∂x

( z
x

) 1
1−α

g(z) dz

= −
∫ ∞
x

1

1− α

( z
x

) 1
1−α 1

x
g(z) dz < 0

Since J(x) is strictly decreasing in x we can conclude

dz∗

dθ
=

1

J ′(z∗(θ))
< 0

So any change that increases the composite parameter θ reduces the cutoff productivity
z∗. In particular, an increase in ke, a decrease in k, or a decrease in β all reduce the cutoff
productivity. Once z∗ has been obtained in this way we can recover p∗ from the cutoff
condition

p∗ =
( k1−α

αα(1− α)1−α

) 1

z∗

So, for example, an increase in ke or a decrease in β will increase p∗.
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(d) With the Pareto density we can explicitly calculate the J(x) function

J(x) ≡
∫ ∞
x

[ ( z
x

) 1
1−α − 1

]
g(z) dz

=

∫ ∞
x

[ ( z
x

) 1
1−α − 1

]
ξz−ξ−1 dz

=

∫ ∞
x

( z
x

) 1
1−α

ξz−ξ−1 dz −
∫ ∞
x

ξz−ξ−1 dz

= x−
1

1−α

[
− ξ

ξ − 1
1−α

z−(ξ−
1

1−α
)

∣∣∣∣∣
∞

z=x

]
−
[
−ξ
ξ
z−ξ
∣∣∣∣∞
z=x

]

=
ξ

ξ − 1
1−α

x−ξ − x−ξ

=
1

1−α

ξ − 1
1−α

x−ξ

where it is assumed that ξ > 1
1−α so that the various integrals converge. Thus in the

Pareto case we can write the free-entry condition as

1
1−α

ξ − 1
1−α

z∗−ξ =
ke
k

1− β
β

which solves for

z∗ =

(
1

1−α

ξ − 1
1−α

k

ke

β

1− β

)1/ξ

We then have

p∗ =
( k1−α

αα(1− α)1−α

)( 1
1−α

ξ − 1
1−α

k

ke

β

1− β

)−1/ξ
The ex post productivity distribution of actively producing firms is also Pareto with shape
parameter ξ but with lower bound z∗ rather than the lower bound 1 for the ex ante
distribution g(z).

2. Hopenhayn with aggregate risk. Firms discount flow profits according to a constant dis-
count factor 0 < β < 1. There is an unlimited number of potential entrants. On paying a sunk
entry cost ke > 0, an entrant receives an initial productivity draw z0 ∼ g(z0) and then starts
operating the next period as an incumbent firm. On paying a fixed operating cost k > 0, an
incumbent firm that hires n workers produces flow output y = znα with 0 < α < 1. The firm’s
productivity z evolves according to a Markov process with transition density f(z′ | z).

Unlike the basic Hopenhayn model, the demand curve facing the firms fluctuates. Let Dt(pt) =
dt/pt denote the demand facing firms if the price is pt and the state of demand is dt. The
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state of demand dt evolves according to a 2-state Markov chain dt ∈ {dl, dh} with transition
probabilities h(d′ | d). Let wt = 1 be the numeraire.

(a) What are the aggregate state variables in this economy? Setup the dynamic programming
problem for incumbent firms and define a recursive competitive equilibrium for this econ-
omy. Be clear as to how all of the endogenous variables are determined in this equilibrium.

(b) Does the cross-sectional distribution of productivity fluctuate in this economy? Why or
why not? What about the price pt and the mass of entrants mt? Explain.

(c) Outline an algorithm by which approximate solutions to this model can be computed.

Solutions:

(a)-(b) The individual state variable for an incumbent firm is its productivity z. The aggregate
state variables are the state of demand d which evolves exogenously and the cross-sectional
distribution of active producers µ(z) which evolves endogenously. Notice that even though
the fluctuations in z are exogenous at the firm level, the distribution µ(z) will fluctuate
endogenously because fluctuations in d will trigger fluctuations in the market-clearing price
which will in turn trigger fluctuations in entry and exit.

Let the perceived law of motion for the distribution be

µ′ = H(µ, d, d′)

Let p(d, µ) denote the price in aggregate state d, µ and let v(z ; d, µ) denote the value of
incumbency to a firm with current productivity z. This value function solves the Bellman
equation

v(z ; d, µ) = π(z, p(d, µ)) + βmax

[
0 ,
∑
d′

∫
v(z′ ; d′, µ′) f(z′ | z)h(d′ | d) dz′

]

where
π(z, p) = (1− α)α

α
1−α (pz)

1
1−α − k

subject to the perceived law of motion

µ′ = H(µ, d, d′)

The RHS of the Bellman equation implies an exit threshold z∗(d, µ) such that firm exits if
z < z∗(d, µ). For interior cases, this cutoff is implicitly defined by∑

d′

∫
v(z′ ; d′, H(µ, d, d′)) f(z′ | z∗)h(d′ | d) dz′ = 0

A stationary equilibrium is a value function v(z; d, µ), output policy y(z; d, µ), cutoff pro-
ductivity z∗(d, µ), law of motion for the distribution H(µ, d, d′), mass of entrants m(d, µ),
and pricing function p(d, µ) such that:

(i) taking p(d, µ) as given, v(z; d, µ), y(z; d, µ) and z∗(d, µ) solve the dynamic program-
ming problem for an incumbent of type z
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(ii) the free-entry condition

β
∑
d′

∫
v(z′; d′, H(µ, d, d′)) g(z′)h(d′ | d) dz′ ≤ ke

is satisfied, with strict equality whenever m(d, µ) > 0

(iii) the goods market clears ∫
y(z; d, µ)µ(z) dz =

d

p(d, µ)

(iv) the law of motion H(µ, d, d′) is generated by the exit policy z∗(d, µ), the exogenous
Markov chains h(d′ | d) and f(z′ | z) and the entry distribution g0(z)

Note that entrants know neither their initial productivity state nor the aggregate state in
the first period for which they operate, hence the free-entry condition takes expectations
with respect to the joint distribution of both these outcomes.

(c) (Sketch) Approximate the distribution µ(z) with a finite vector of moments m and let

m′ = Ĥ(m, d, d′)

denote the law of motion for this vector of moments. Let ad, bd etc denote the coefficients
of this approximate law of motion (conditional on the exogenous state d). Then start with
an initial guess at coefficients for law of motion a0

d, b
0
d and solve the dynamic programming

problem of an incumbent firm conditional on those coefficients. This also implies an
exit policy. Find the price and mass of entrants that solve the free-entry condition and
market clearing condition in the usual Hopenhayn way (conditional on these coefficients
a0
d, b

0
d). Then generate next period’s distribution of producers using the exit policy, mass

of entrants, and the exogenous Markov chains. Check if next period’s distribution is
approximately the same as predicted by the approximate law of motion with coefficients
a0
d, b

0
d. If not, update to new coefficients a1

d, b
1
d and try again.


