

Macroeconomics: Problem Set #3 Due Tuesday May 14 in class

1. Lognormal bond pricing. Suppose the representative consumer has endowment y_t and can trade in a riskless one-period bond that pays 1 unit of consumption for sure one period after they are bought. Let q_t denote the price of the bond in period t and let a_t denote their holdings of bonds at the beginning of period t. The representative consumer seeks to maximize

$$\mathbb{E}\left\{\sum_{t=0}^{\infty} e^{-\rho t} u(c_t)\right\}, \qquad \rho > 0$$

subject to the budget constraints

$$c_t + q_t a_{t+1} = a_t + y_t$$

with initial conditions $a_0 = 0$ and $y_0 = 1$. Endowment growth $x_{t+1} \equiv y_{t+1}/y_t$ follows a Markov process with transition probabilities $F(x' \mid x) = \operatorname{Prob}[x_{t+1} \leq x' \mid x_t = x]$.

- (a) Let q(x, y) denote the price of the bond in state x, y and let v(a, x, y) denote the representative consumer's value function. Set up the representative consumer's dynamic programming problem in terms of this value function and define a recursive competitive equilibrium.
- (b) Use the optimality conditions of the representative consumer and market clearing to solve for the equilibrium bond price q(x, y).

Now suppose that the utility function has the CRRA form

$$u(c) = \frac{c^{1-\alpha} - 1}{1 - \alpha}, \qquad \alpha > 0$$

and that the dividend growth process follows a lognormal AR(1) process

$$\log x_{t+1} = (1 - \phi)g + \phi \log x_{t+1} + \varepsilon_{t+1}, \qquad -1 < \phi < 1, \qquad g \ge 0$$

where the innovations ε_t are IID $N(0, \sigma_{\varepsilon}^2)$.

(c) Show that the equilibrium bond price can be written q(x) independent of the level y. Let $r(x) \equiv -\log q(x)$ denote the associated riskless interest rate. Solve for q(x) and r(x). Does higher α increase or decrease r(x)? Give as much intuition as you can.

Now suppose that there can be trade in bonds of longer maturity. Let a bond of maturity j = 1, 2, ... pay 1 unit of consumption for sure sure in j periods time. Let q_t^j denote the price at t of a bond of maturity j. In this notation, the price of a one-period bond is $q_t^1 = q(x_t)$.

(d) Show that the price q_t^j of a bond of maturity j satisfies

$$q_t^j = \mathbb{E}_t \left[e^{-\rho} x_{t+1}^{-\alpha} q_{t+1}^{j-1} \right], \qquad j = 1, 2, \dots$$

(with the convention that $q_t^0 = 1$). Solve for the equilibrium bond prices q_t^j .

(e) Let r_t^j denote the *yield* on a bond of maturity j

$$r_t^j \equiv -\frac{1}{j}\log q_t^j$$

In this notation, the one-period riskless rate is $r_t^1 = r(x_t)$. Solve for the equilibrium yields r_t^j . The *yield-curve* at date t is a plot of r_t^j against j. How does the yield curve depend on x_t ? Is the yield curve in this economy upward or downward sloping in j? How if at all do your answers depend on ϕ ? Explain.

2. Risk-averse job search and savings. Consider an unemployed worker with preferences

$$\mathbb{E}\left\{\sum_{t=0}^{\infty}\beta^t u(c_t)\right\}, \qquad 0 < \beta < 1$$

where $u(c_t)$ is strictly increasing and concave. Each period the worker draws an IID wage offer w from a distribution $F(w) = \operatorname{Prob}[w_t \leq w]$. If they accept the wage offer they become employed and have $c_t = w$ until they lose their job. If they reject the wage offer they remain unemployed, consume benefits $c_t = b$ this period, and draw a new wage offer w' next period.

At the beginning of each period an employed worker loses their job with probability $\delta \in (0, 1)$ and keeps their job with probability $1 - \delta$. If a worker loses their job at the beginning of period t they spend period t unemployed, obtain benefits b, and then draw a new wage offer w' at the beginning of period t + 1 (which they can then accept or reject, as usual). If the worker keeps their job at the beginning of period t their wage remains unchanged, i.e., the same as the wage they accepted when first starting their job.

- (a) Let v(w) denote the unemployed worker's value function. Setup and explain the unemployed worker's dynamic programming problem in terms of this value function.
- (b) Show that the unemployed worker's problem is characterized by a reservation wage \bar{w} such that the worker rejects the offer if $w < \bar{w}$ and accepts the offer if $w > \bar{w}$. How does \bar{w} depend on δ ? Explain.

Now suppose that workers can save. Let $n_t \in \{0, 1\}$ denote a worker's beginning of period employment status, with $n_t = 1$ denoting employment and $n_t = 0$ denoting unemployment. The worker's income is then $y_t = w_t n_t + b(1 - n_t)$. Suppose also that workers have beginning of period assets a_t and have budget constraints

$$c_t + a_{t+1} = Ra_t + y_t$$

for some constant return R and given initial condition a_0 .

(c) v(w, a, n) denote the value function of a worker with current wage (offer) w, assets a and who is in employment status $n \in \{0, 1\}$. Setup and explain the worker's dynamic programming problem.

Now suppose that the utility function has the CRRA form

$$u(c) = \frac{c^{1-\alpha} - 1}{1 - \alpha}, \qquad \alpha > 0$$

and that the wage distribution is lognormal, i.e., that $\log w$ is IID $N(\mu_w, \sigma_w^2)$.

- (d) Let the parameters be $\alpha = 1$, $\beta = 0.95$, $R = 1/\beta$, $\delta = 0.05$, b = 0.4, $\mu_w = -0.125$, and $\sigma_w = 0.5$. Using these parameter values, solve the worker's dynamic programming problem.
- (e) Let $\bar{w}(a)$ denote the worker's reservation wage. How does the worker's reservation wage depend on their savings a? Explain.
- (f) How would your answers to (d) and (e) change if instead $\sigma_w = 0.25$? or $\sigma_w = 1$? How would your answers to (d) and (e) change if instead $\delta = 0.025$? or $\delta = 0.1$? Explain.
- 3. **Precautionary savings by backwards induction.** Consider a *finite horizon* savings problem where the representative consumer seeks to maximize

$$\mathbb{E}\left\{\sum_{t=0}^{T}\beta^{t} u(c_{t})\right\}, \qquad 0 < \beta < 1$$

where $u(c_t)$ is strictly increasing and concave. Each period the consumer draws IID income y_t from a distribution $F(y) = \operatorname{Prob}[y_t \leq y]$ and has budget constraints

$$c_t + a_{t+1} = Ra_t + y_t$$

for some constant return R and given initial condition a_0 .

(a) Let $x \equiv Ra + y$ denote the consumer's beginning of period 'cash-on-hand' and let $v_t(x)$ denote the time t value of having cash-on-hand x. Setup and explain the consumer's dynamic programming problem.

Again suppose that the utility function has the CRRA form

$$u(c) = \frac{c^{1-\alpha} - 1}{1-\alpha}, \qquad \alpha > 0$$

(b) Show that the terminal value function $v_T(x)$ is strictly increasing, strictly concave, and exhibits *prudence*. Show that $v_{T-1}(x)$ has the same properties. Show by induction that the sequence of value functions $v_t(x)$ for $t = 0, 1, \ldots, T$ all have these properties.

Now suppose that the income distribution is lognormal, i.e., that $\log y$ is IID $N(\mu_y, \sigma_y^2)$.

- (c) Let the parameters be $\alpha = 1$, $\beta = 0.95$, $R = 1/\beta$, $\mu_y = -0.125$, and $\sigma_y = 0.5$ and let the horizon be T = 75. Using these parameter values, solve the consumer's dynamic programming problem by backwards induction. Plot the consumer's value functions $v_t(x)$ and consumption policy functions $c_t(x)$.
- (d) How would your answers to (c) change if instead $\alpha = 0.5$? or $\alpha = 2$? How would your answers to (c) change if instead T = 50? or T = 100? Explain.