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1. Markov chains. Consider a 2-state Markov chain on xi, i = 1, 2 with transition probabilities
pij = Prob[xt+1 = xj |xt = xi] for i, j = 1, 2 given by the matrix

P =

(
p11 p12
p21 p22

)
=

(
p 1− p

1− q q

)
with parameters p ∈ [0, 1] and q ∈ [0, 1].

(a) Let λi for i = 1, 2 denote the eigenvalues of this transition matrix. Solve for λi in terms
of the parameters p, q. Show that at least one λi = 1. Show that maxi |λi| = 1. Can there
be a zero eigenvalue? Can there be a negative eigenvalue? Explain.

(b) Let ψ∗ denote a stationary distribution of the Markov chain. Solve for ψ∗ in terms of the
parameters p, q. Can there be more than one stationary distribution? Does the sequence
of distributions ψt+1 = P>ψt always converge to such a stationary distribution? Explain.

Solutions:

(a) The eigenvalues λi are given by the roots of the characteristic polynomial

f(λ) = λ2 − trace(P )λ+ det(P )

where
trace(P ) = p11 + p22 = p+ q

and
det(P ) = p11p22 − p12p21 = pq − (1− p)(1− q) = p+ q − 1

That is, the eigenvalues λi solve

f(λ) = λ2 − (p+ q)λ+ (p+ q − 1) = 0

From the quadratic formula, the roots are

{λ1 , λ2} =
(p+ q)±

√
(p+ q)2 − 4(p+ q − 1)

2

=
(p+ q)±

√
(p+ q)2 − 4(p+ q) + 22)

2

=
(p+ q)± (p+ q − 2)

2

= {p+ q − 1 , 1}
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Hence indeed one eigenvalue is λ = 1 and the other is λ = p + q − 1. Since both p and
q are in [0, 1] the sum p + q − 1 is at least −1 and at most +1 so indeed maxi |λi| = 1.
There is a zero eigenvalue whenever p + q − 1 = 0, i.e., whenever q = 1− p. For example
if p = 1 and q = 0 or the reverse with p = 0 and q = 1 or if p = q = 1/2. Likewise
there is a negative eigenvalue whenever p+ q − 1 < 0, i.e., whenever q < 1− p. In words,
this corresponds to a situation where the probability of staying in state 2 is less than the
probability of switching from state 1 to state 2.

(b) A stationary distribution ψ∗ of the Markov chain satisfies

ψ∗ = P>ψ∗

or
(I − P>)ψ∗ = 0

For this two state example we have 1 0

0 1

−
 p 1− q

1− p q

 ψ∗1

ψ∗2

 =

 0

0


Equivalently

(1− p)ψ∗1 + (q − 1)ψ∗2 = 0

(p− 1)ψ∗1 + (1− q)ψ∗2 = 0

There is only one linearly independent equation here. To pin down the stationary distri-
bution we need to combine this with the adding-up condition ψ∗1 + ψ∗2 = 1. This gives

ψ∗1 =
(1− q)

(1− q) + (1− p)

ψ∗2 =
(1− p)

(1− q) + (1− p)

In performing these calculations, we implicitly assumed that (1 + q) + (1− p) 6= 0, i.e., we
do not have both p = 1 and q = 1 so that we do not have both eigenvalues λ = 1. If instead
p = q = 1, the Markov transition matrix is P = I and the sequence of distributions is
given by ψt+1 = P>ψt = ψt i.e., ψt+1 = ψt. In this case, any ψ (satisfying ψi ∈ [0, 1] with∑

i ψi = 1) is a stationary distribution. By analogy to a scalar linear difference equation
xt+1 = axt, this corresponds to a = 1.

Even if there is a unique stationary distribution, i.e., if at least one of p or q is not 1, then
iterating on ψt+1 = P>ψt need not converge to that stationary distribution. For example,
if p = q = 0 such that the other eigenvalue is p + q − 1 = −1 then there is a unique
stationary distribution ψ∗1 = ψ∗2 = 1/2 but the sequence ψt+1 = P>ψt follows a 2-cycle
and never converges to that distribution (unless by chance it starts there). By analogy to
a scalar difference equation xt+1 = axt, this corresponds to a = −1.
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To summarize, to guarantee the existence of a unique stable stationary distribution we
need both p, q in (0, 1). This is true more generally. To guarantee the existence of a
unique stable stationary distribution for an n-state Markov chain with elements pij we
need all pij in (0, 1) so that the probability mass is never completely trapped in one state.

2. Stochastic growth with elastic labor supply. Suppose the planner seeks to maximize

E

{
∞∑
t=0

βt u(ct, lt)

}
, 0 < β < 1

subject to the resource constraint

ct + kt+1 = ztf(kt, lt) + (1− δ)kt, 0 < δ < 1

with initial conditions k0 > 0 and z0 > 0. Productivity zt evolves according to a Markov process
with transition probabilities F (z′ | z) = Prob[zt+1 ≤ z′ | zt = z] and unconditional mean z̄ > 0.

In this problem the planner chooses how much labor lt to supply. Assume that u(ct, lt) is
strictly increasing, strictly concave in ct and strictly decreasing, strictly convex in lt. The
production function f(kt, lt) is strictly increasing and strictly concave in both arguments and
satisfies constant returns to scale.

(a) Let v(k, z) denote the planner’s value function. Setup and explain the Bellman equation
that determines v(k, z).

(b) Derive the planner’s optimality conditions for consumption, capital and labor.

Now suppose that the utility function has the form

u(c, l) = log c− l1+ϕ

1 + ϕ
, ϕ > 0

and the production function has the form

f(k, l) = kαl1−α, 0 < α < 1

(c) Solve for the non-stochastic steady state values of consumption, capital, and labor in terms
of model parameters. Suppose there is a permanent increase in the level of productivity
z̄. Explain how this changes the steady state values of consumption, capital, and labor.
Give economic intuition for your answers.

Now suppose that productivity is given by a stationary AR(1) process in logs

log zt+1 = (1− φ) log z̄ + φ log zt + εt+1, 0 < φ < 1

where the innovations εt are IID N(0, σ2
ε).

(d) Let α = 0.3, β = 1/1.05, δ = 0.05, φ = 0.97, ϕ = 1, z̄ = 1 and σε = 0.025. Using
these parameter values, use collocation methods to solve the model. In particular, use
cubic splines with 99 breakpoints and discretize the shock process using 29 points for
productivity zt and 15 points for the innovations εt.
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(e) Suppose the economy is at its non-stochastic steady state and that at t = 0 there is a 1
standard deviation innovation to productivity, i.e., ε0 = σε = 0.025. Use the functions
you computed in part (d) to calculate and plot impulse responses for the log-deviations
(from steady state) of consumption, capital, labor and output for T = 250 periods after
the shock. Explain your findings.

(f) Simulate a sequence of productivity zt of length T = 1, 000 starting from z0 = z̄ = 1.
Use this simulated sequence of productivity and the functions you computed in part (c)
to generate simulated sequences of the log-deviations (from steady-state) of consumption,
capital, labor and output starting from k0 = k̄. Which of these variables move most closely
together? Which of these variables is most volatile? Explain.

(g) How would your answers to (e) and (f) change if ϕ was much lower, say ϕ = 0.1? What
about ϕ = 10? Give economic intuition for your answers.

(h) Suppose that capital was not needed for production, α → 0. Explain how this simplifies
the determination of equilibrium consumption and employment. Explain the implications
of this for fluctuations in consumption and employment. What does this suggest about
the importance of capital in this model?

Solutions:

(a) The Bellman equation for this problem can be written

v(k, z) = max
c,l,k′

[
u(c, l) + β

∫
v(k′, z′) dF (z′ | z)

]
subject to

c+ k′ = zf(k, l) + (1− δ)k

The Bellman equation characterizes the value v(k, z) of being endowed with k units of capital
at the beginning of the period, when the current productivity shock is z, and then proceeding
optimally.

(b) Using the resource constraint to eliminate c from the objective, the RHS of the Bellman equation
is

u( zf(k, l) + (1− δ)k − k′ , l) + β

∫
v(k′, z′) dF (z′ | z)

The planner’s first order condition with respect to l is

uc(c, l)(zfl(k, l)) + ul(c, l) = 0

The planner’s first order condition with respect to k′ is

−uc(c, l) + β

∫
vk(k

′, z′) dF (z′ | z) = 0

where the subscripts indicate partial derivatives and where it is understood that c satisfies the
resource constraint. The l condition can be written

−ul(c, l)
uc(c, l)

= zfl(k, l) (1)
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which says the planner equates the marginal rate of substitution between labor and consumption
to the marginal product of labor (i.e., the marginal rate of transformation between labor and
consumption). The envelope condition is

vk(k, c) = uc(c, l)(zfk(k, l) + (1− δ))

Combining the envelope condition with the first order condition for k′ gives the consumption
Euler equation

uc(c, l) = β

∫
uc(c

′, l′)(z′fk(k
′, l) + (1− δ)) dF (z′ | z) (2)

where again it is understood that c and c′ satisfy the respective resource constraints

c+ k′ = zf(k, l) + (1− δ)k (3)

Equations (1), (2) and (3) are the planner’s key optimality conditions and pin down the planner’s
choice of c, l, k′ given the current state k, z.

(c) First note that with these functional forms we have

uc(c, l) =
1

c
, ul(c, l) = −lϕ

and
fl(k, l) = (1− α)kαl−α = (1− α)(k/l)α, fk(k, l) = αkα−1l1−α = α(k/l)α−1

So the static labor condition becomes

clϕ = z(1− α)(k/l)α

and the consumption Euler equation becomes

1

c
= β

∫
1

c′
(
z′α(k′/l′)α−1 + (1− δ)

)
dF (z′ | z)

In a non-stochastic steady state we have z = z′ = z̄ with certainty and we look for c̄, l̄, k̄ that
satisfy c = c′ = c̄, l = l′ = l̄ and k = k′ = k̄. Our three key conditions become

c̄l̄ϕ = z̄(1− α)(k̄/l̄)α (1′)

1 = β
(
z̄α(k̄/l̄)α−1 + (1− δ)

)
(2′)

and
c̄+ δk̄ = z̄k̄αl̄1−α = ȳ (3′)

These can be solved recursively as follows. First, from the steady-state consumption Euler
equation we have the capital/labor ratio

k̄

l̄
=

(
αz̄

ρ+ δ

) 1
1−α

, ρ ≡ 1

β
− 1

and hence the steady-state output/labor ratio

ȳ

l̄
= z̄

1
1−α

(
α

ρ+ δ

) α
1−α
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Hence the steady-state capital/output ratio is

k̄

ȳ
=

α

ρ+ δ

independent of z̄. Then from the resource constraint the steady-state consumption/output ratio
is

c̄

ȳ
= 1− δ k̄

ȳ
=
ρ+ (1− α)δ

ρ+ δ

also independent of z̄. Now write the labor market condition as

l̄ϕc̄ = z̄(1− α)(k̄/l̄)α = (1− α)
ȳ

l̄

so that

l̄1+ϕ =
1− α
c̄/ȳ

Hence steady-state labor is

l̄ =

(
(1− α)(ρ+ δ)

ρ+ (1− α)δ

) 1
1+ϕ

again independent of z̄. Thus a permanent increase in z̄ leaves l̄ unchanged. Then since ȳ/l̄ is
increasing in z̄, we must have ȳ increasing in z̄ and since c̄/ȳ is independent of z̄ it must also be
the case that c̄ is increasing in z̄. Indeed a 1% increase in z̄ increases consumption, capital and
output by 1

1−α > 1% (there is a direct effect of 1% + the indirect effects of capital deepening,
i.e., some of the increase in output is invested in more capital which increases output further).

(d) The attached Matlab code elastic labor collocation.m solves the model with the given
parameters using collocation.

One trick that I used was to eliminate labor l from the RHS of the Bellman equation using the
static optimality condition

lϕc = (1− α)z

(
k

l

)α
to write

l(c ; k, z) =

(
(1− α)zkα

c

) 1
ϕ+α

so that we can write period utility as

u(c ; k, z) = log c− l(c ; k, z)1+ϕ

1 + ϕ

and we can write the resource constraint as

c+ k′ = zf(k , l(c ; k, z)) + (1− δ)k

and the optimization on the RHS can then be taken over c alone.

The value function v(k, z) and the optimal policy functions for capital accumulation k′ = g(k, z),
consumption c(k, z), and labor l(k, z) are shown in Figure 1 below.
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(e) The impulse response functions for consumption ct, capital kt, labor lt and output yt given a
productivity shock of ε0 = 0.025 are shown in Figure 2 below.

On impact productivity rises by ε0 = 0.025 and then decays geometrically back to steady
state. On impact, labor rises hence output responds by more than 1-for-1 with productivity.
Consumption rises by less than 1-for-1 with output with the remainder invested so that physical
capital builds up and output returns to steady state more slowly than does productivity.

Crucially, the economy’s response to this temporary productivity shock is not the same as its
response to a permanent productivity shock. The key is that on impact consumption rises
less than 1-for-1 with output so that income effect on labor is not as large as the substitution
effect. Of course consumption responds less than 1-for-1 with output precisely because of the
accumulation of physical capital that allows the benefits of the temporarily higher productivity
to be amplified and smoothed over time.

(f) Simulated time series are shown in Figure 3 below.

For this simulation, the standard deviations of the log of each of the key variables are:

c k l y z

0.1472 0.1630 0.0136 0.1572 0.1078

Output is more volatile than productivity. Consumption is somewhat smoother than output,
labor is much smoother than either.

The correlation matrix for the logs of these key variables is:

c k l y z

c 1.0000 0.9792 0.2888 0.9862 0.9685

k 0.9792 1.0000 0.0885 0.9320 0.8977

l 0.2888 0.0885 1.0000 0.4434 0.5181

y 0.9862 0.9320 0.4434 1.0000 0.9964

z 0.9685 0.8977 0.5181 0.9964 1.0000

Notice in particular that consumption, output, and productivity are highly positively correlated,
labor is positively correlated but much less so.

(g) With ϕ = 0.1, labor supply is highly elastic (the labor supply curve is nearly horizontal) so a
given shift in labor demand as triggered by a productivity shock leads to a large employment
response. Similarly, with ϕ = 10, labor supply is highly inelastic (the labor supply curve is
nearly vertical) so a given shift in labor demand as triggered by a productivity shock leads to a
very small employment response. For example, with ϕ = 10 the standard deviations of the log
of each of the key variables are:

c k l y z

0.1430 0.1568 0.0021 0.1516 0.1078

So indeed in this case employment is almost constant even though productivity is just as volatile
as in parts (e) and (f).
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(h) With α→ 0 capital disappears from the model leaving us with an essentially static model where
outcomes are characterized by the labor supply condition

lϕt ct = zt

and the resource constraint
ct = ztlt

Together these imply lt = 1 independent of zt and ct = zt. Thus without capital this model im-
plies constant employment and consumption (and output) that fluctuates exactly 1-for-1 with
productivity. Employment is constant here because with log utility the income and substitution
effects of a change in productivity exactly cancel. Thus in this special case, the response of
the economy to a temporary productivity shock is essentially the same as the response to a
permanent shock. In this sense, capital accumulation in response to a temporary productivity
shock is the key mechanism of the original model. This capital accumulation occurs because of
intertemporal consumption smoothing and implies that consumption responds less than 1-for-1
with output so that the substitution effect on labor supply dominates the income effect and
employment rises. Without this, as seen here with α→ 0, employment does not respond to tem-
porary productivity shocks, just as it doesn’t respond to permanent productivity shocks. Put
differently, it is intertemporal consumption smoothing that makes the response to temporary
productivity shocks different from the response to permanent productivity shocks.
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Figure 1: Value function and policy functions
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Figure 2: Impulse response functions



Macroeconomics: Problem Set #2 11

Figure 3: Simulated time series


