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Macroeconomics
Problem Set #1: Solutions

1. Simple difference equations. Consider the linear difference equation

xt+1 = x̄+ a (xt − x̄), t = 0, 1, 2, . . . , x0 ∈ R given

(a) Give a complete account of the possible dynamics of xt implied by this linear difference
equation. Explain how these dynamics depend on the value of the parameter a. Do these
dynamics depend on the value of the initial condition x0? Explain.

Now consider the nonlinear difference equation

xt+1 = a xt(1− xt), t = 0, 1, 2, . . . , x0 ∈ [0, 1] given, a ∈ (0, 4]

(b) Show that, for this difference equation, xt lies in [0, 1] for all t.

(c) How many steady states does this difference equation have? How do these depend on the
parameter a?

(d) Give as complete an account as you can of the possible dynamics of xt implied by this
difference equation. Explain how these dynamics depend on the value of the parameter a.
Do these dynamics depend on the value of the initial condition x0? Explain.

Hint : Consider the special cases

a ∈ { 0.5 , 1.5 , 2.5 , 3.0 , 3.5 , 4.0 }

Solutions:

(a) Iterating on the difference equation gives

x1 − x̄ = a (x0 − x̄)

x2 − x̄ = a (x1 − x̄) = a2 (x0 − x̄)

x3 − x̄ = a (x2 − x̄) = a3 (x0 − x̄)

...

and so for any t = 0, 1, 2, ... and a we have

xt = x̄+ at(x0 − x̄) (∗)

Now let us consider how this solution depends on the values of a and x0. First notice that
if by coincidence x0 = x̄ then xt = x̄ (regardless of a) for all t. Now suppose x0 6= x̄. Then
if |a| < 1 the sequence xt given by (∗) converges to x̄ from any initial x0. That convergence
is monotonic if a ∈ (0, 1) and oscillatory if a ∈ (−1, a). That convergence takes place in
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one step if a = 0. If a > 1 the sequence xt given by (∗) diverges monotonically to ±∞
(depending on the sign of x0 − x̄). If a < −1 the sequence xt given by (∗) diverges in an
explosive series of oscillations. Now what about the knife-edge cases a = 1 and a = −1?
If a = 1 we simply have

xt = x̄+ (1)t(x0 − x̄) = x0

That is xt = x0 for any x0. Thus if a = 1 every x0 is a steady state. Graphically, the
difference equation lies on top of the 45◦-line. Finally, if a = −1 we have

xt = x̄+ (−1)t(x0 − x̄)

and since (−1)t = 1 for even powers t = 0, 2, 4, 6 . . . while (−1)t = −1 for odd powers
t = 1, 3, 5, . . . we have that xt = x0 for t = 0, 2, 4, 6 . . . while xt = x1 = 2x̄ − x0 for t =
1, 3, 5, . . . . In other words, the sequence xt is a 2-cycle of the form x0, x1, x0, x1, x0, x1, . . . .
Graphically, the difference equation is a straight line with slope −1 and iterating on the
difference equation leads to cycles around x̄. Indeed the two points in the cycle average
out to x̄, that is x0 and x1 are such that

1

2
(x0 + x1) = x̄

Notice again that if by coincidence x0 = x̄ then x1 = x̄ = x0 so again in this degenerate
case xt remains at x̄ regardless of a.

(b) Consider the function

f(x) = ax(1− x) = ax− ax2, x ∈ [0, 1], a > 0

Note that f ′(x) = a − 2ax and f ′′(x) = −2a < 0 so f(x) is strictly concave. Hence f(x)
has a global maximum at the critical point x∗ solving f ′(x∗) = 0 which is given by

x∗ =
a

2a
=

1

2

Hence
f(x) ≤ max

x
f(x) = f(x∗) = f(1/2) = a(1/2)(1/2) = a/4

Then since a ≤ 4 we have f(x) ≤ 1. Hence f(x) = ax(1 − x) ∈ [0, 1] for any x ∈ [0, 1].
Since we are given x0 ∈ [0, 1] we have x1 = f(x0) ∈ [0, 1] and x2 = f(x1) ∈ [0, 1] and more
generally xt+1 = f(xt) ∈ [0, 1] for all t = 0, 1, . . . . Hence xt ∈ [0, 1] for all t = 0, 1, . . . .

(c) Consider constant solutions xt = xt+1 = x∗ satisfying

x∗ = ax∗(1− x∗)

Clearly x∗ = 0 solves this equation hence x∗ = 0 is a fixed point of the difference equation
xt+1 = axt(1 − xt) regardless of a. Now consider x∗ 6= 0. We can then divide both sides
by x∗ to get

1 = a(1− x∗)

or

x∗ =
a− 1

a
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But now observe that if a < 1 then this solution is negative and so, as we know from part
(b), cannot be reached by iterating on xt+1 = axt(1 − xt) from any x0 ∈ [0, 1]. Hence we
conclude that if a ≤ 1 then the difference equation has a unique fixed point at x∗ = 0 but
if a ∈ (1, 4] then the difference equation has two fixed points, one at x∗ = 0 and the other
at x∗ = (a− 1)/a.

(d) (Sketch) Again let f(x) = ax(1 − x) with f ′(x) = a − 2ax. Note that f ′(0) = a and
f ′(x∗) = a − 2ax = a − 2a(a − 1)/a = 2 − a and note that |f ′(x∗)| = |2 − a| < 1 for
all a ∈ (1, 3). Hence if a ∈ (0, 1) then the fixed point x∗ = 0 is locally stable while
if a ∈ (1, 3) the fixed point x∗ = 0 is unstable while the fixed point x∗ = (a − 1)/a is
locally stable. Indeed if a ∈ (0, 1) we have that xt+1 = axt(1 − xt) ≤ xt so that if a < 1
the sequence xt converges to the fixed point x∗ = 0 for any x0 ∈ [0, 1]. Similarly, if
a ∈ (1, 3) we have xt → x∗ = (a − 1)/a for any x0 ∈ [0, 1], in oscillations if a ∈ (2, 3).
To summarise, if a ∈ (0, 3) the sequence xt is globally convergent to a fixed point. That
fixed point is x∗ = 0 if a ≤ 1 but x∗ = (a − 1)/a if a ∈ (1, 3). Things are more complex
if a ≥ 3. At a = 3 exactly the dynamics bifurcate. For a ∈ (3, 4) neither x∗ = 0 nor
x∗ = (a − 1)/a are stable and the iterates follower more complex dynamics. For values
of a ∈ (3, 1 +

√
6) = (3, 3.4495...) these orbits form stable limit cycles given by the roots

of f 2(x) = x where f 2(x) denotes the second iterate f 2(x) ≡ f(f(x)), i.e., xt+2 = f 2(xt).
For higher values a > 1 +

√
6 ≈ 3.4495 more complex dynamics emerge. Take a look at

the Wikipedia entry for the ‘logistic map’ for some animated examples. The textbook
Dynamics and Bifurcations by Hale and Koçak gives a more formal treatment if you’re
interested. The key point here is that even apparently simple difference equations can give
rise to quite complex dynamics.

The attached Matlab file ps1 question1.m performs these iterations given values for a
and x0. Figures 1 and 2 below illustrate the cases a = 0.9 and a = 1.5 for which the
dynamics converge to x∗ = 0 from any x0 ∈ [0, 1]. Figure 3 illustrates the case a = 2.5
for which the dynamics converge to x∗ = (a − 1)/a = 0.6 for any x0 ∈ [0, 1]. Figure 4
illustrates the case a = 3 for which a stable limit cycle emerges. Figures 5 and 6 illustrate
a = 3.5 and a = 3.9 for which more complex dynamics emerge. Figure 7 shows these cases
starting from various initial conditions x0.

2. Numerical dynamic programming by value function iteration. Consider the infinite-
horizon growth model. The planner chooses capital stocks kt+1 for t = 0, 1, . . . to maximize

∞∑
t=0

βtu(ct), 0 < β < 1

subject to the sequence of resource constraints

ct + kt+1 ≤ f(kt) + (1− δ)kt, 0 < δ < 1

with given initial condition
k0 > 0

(a) Let v(k) denote the value function for this problem. Setup and explain the Bellman
equation that determines v(k).
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Now suppose that the period utility function has the isoelastic form

u(c) =
c1−σ − 1

1− σ
, σ > 0

and that the production function is

f(k) = zkα, 0 < α < 1

(b) Solve for the steady state values c∗ and k∗. What is the steady state capital/output ratio?
What is the steady state consumption/output ratio? What is the steady state savings
rate? How does this compare to the ‘golden rule’ savings rate for this economy? Explain.
How if at all do your answers depend on the value of σ? Explain.

(c) Now let z = 1, α = 0.3, β = 1/1.05, δ = 0.05 and σ = 1. Using these parameter values,
discretize the state space on a grid of n = 1001 points calculate and plot the value function
v(k) on this grid of points. Let c(k) be the associated policy function for consumption.
Calculate and plot c(k) for these parameter values. How does the savings behavior implied
by this policy function compare to the steady-state savings rate from part (b)? Explain.

(d) Now suppose the economy is at steady state then suddenly at t = 0 the productivity level z
permanently increases from z = 1 to z′ = 1.05. Calculate and plot the new value function
and consumption policy function associated with z′. Explain how these compare to the
ones you found in part (c). Calculate and plot the transitional dynamics of the economy
as it adjusts to its new long-run values. In particular, calculate and plot the time-paths of
capital and consumption until they have converged to their new steady state levels. Use a
phase diagram to explain these transitional dynamics.

(e) How if at all would your answers to parts (b) through (d) change if σ was lower, say
σ = 0.5? Or higher, say σ = 2? Give intuition for your answers.

Solutions:

(a) The Bellman equation for this problem can be written

v(k) = max
k′

[
u(f(k) + (1− δ)k − k′) + βv(k′)

]
As usual, the Bellman equation characterizes the value v(k) of being endowed with k units
of capital at the beginning of the period and then proceeding optimally. Supposing we
have found a v(k) that solves the Bellman equation, the consumption policy function can
be recovered as

c(k) = argmax
c

[
u(c) + βv(f(k) + (1− δ)k − c)

]
(b) The first order condition for this problem can be written

u1(c) = βv1(k
′)

where the subscript 1 indicates the first derivative and where it is understood that c =
f(k) + (1− δ)k − k′. The envelope condition is

v1(k) = u1(c)(f1(k) + 1− δ)
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Evaluating the latter at k′ gives

v1(k
′) = u1(c

′)(f1(k
′) + 1− δ)

where it is understood that c′ = f(k′) + (1 − δ)k′ − k′′. Hence we have the consumption
Euler equation

u1(c) = βu1(c
′)(f1(k

′) + 1− δ)

In steady state with k = k′ = k∗ etc and c = c′ = c∗ etc this simplifies to

1 = β(f1(k
∗) + 1− δ)

which can be solved for k∗. From the resource constraint we then have

c∗ = f(k∗)− δk∗

With the given functional forms

k∗ =

(
α

ρ+ δ

) 1
1−α

z
1

1−α , ρ ≡ 1

β
− 1

Steady state output is then

y∗ =

(
α

ρ+ δ

) α
1−α

z
1

1−α

So the steady state capital/output ratio is

k∗

y∗
=

α

ρ+ δ

And the steady state consumption/output ratio is

c∗

y∗
= 1− δk

∗

y∗
=
ρ+ (1− α)δ

ρ+ δ

With steady state saving

s∗ ≡ 1− c∗

y∗
= δ

k∗

y∗
=

δα

ρ+ δ

With the production function y = zkα the ‘golden rule’ saving rate that maximizes steady
state consumption is given by

sGR = α

Which is clearly greater than the steady state savings rate

s∗ = α
δ

ρ+ δ
< α = sGR

Notice that with higher patience, as ρ→ 0, the savings rate s∗ → sGR.

Finally notice that because of the additively separable intertemporal utility function
∑∞

t=0 β
tu(ct),

the period utility function u(c) plays no role in determining any of the steady state values.
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(c) With the given parameter values, k∗ = 4.8040, y∗ = 1.6013 and c∗ = 1.3611 so that
c∗/y∗ = 0.85 and δk∗/y∗ = 0.15 (85% of output is consumed, 15% is saved/invested). The
capital/output ratio is k∗/y∗ = 3. The attached Matlab file ps1 question2.m performs the
value function iteration with the given parameters. The results for the value function v(k)
and the consumption policy function c(k) are shown in Figure 8. The consumption policy
function c(k) corresponds to the stable arm of the saddle path in the usual phase diagram
and goes through the steady state (k∗, c∗) where k∗ = 4.8040 and c∗ = c(k∗) = 1.3611.
These steady state values are indicated by the dashed lines in the right panel. When the
capital stock is low, k < k∗, consumption is low relative to steady state c < c∗ and hence
the savings rate is relatively high (higher than δk∗/y∗ = 0.15). When the capital stock is
high, k > k∗, consumption is high relative to steady state c > c∗ and hence the savings
rate is relatively low (lower than δk∗/y∗ = 0.15).

(d) When productivity z increases from z = 1 to z′ = 1.05 the value function v(k) and the
consumption policy function c(k) both shift up, as shown in Figure 9. The economy is
more productive which leads to higher capital, output, and output. Steady state capital
increases to k∗′ = 5.1508, steady state output increases to y∗′ = 1.7169 and steady state
consumption increases to c∗′ = 1.4594. To see this in a phase diagram, first note that an
increase in z shifts the ∆c = 0 locus to the right and shifts up the ∆k = 0 locus (i.e.,
the curve zkα − δk shifts up). Thus in the long run consumption, output and capital
per worker all increase. On ‘impact’ the level of consumption immediately jumps up to
c(0) > c∗ on the new stable arm going through the new steady state. The level of output
also jumps up on impact because of the change in productivity. Capital does not jump
on impact because it is predetermined. On impact, consumption jumps by less than the
jump in output with the difference being saved. This increase in savings/investment is
what allows the economy to build up a new higher level of capital in the long run. As the
economy transitions to its new long run, consumption and output continue to rise with the
new higher levels of capital. The transitional dynamics are illustrated roughly in Figure
10. Note the jagged path of ct — an artifact of the relatively coarse grid in the vicinity of
these steady states.

(e) The different values of σ do not affect the steady state (long run) values c∗, k∗ but do affect
the transitional dynamics around the steady state. Intuitively, if σ = 0.5, consumption is
highly substitutable over time — i.e., the intertemporal elasticity of substitution is relatively
high, 1/σ = 2. In this case, the consumption smoothing motive is weak and the planner
instead transitions the economy to its new steady state more quickly than in the benchmark
with σ = 1. Alternatively, if σ = 2, consumption is highly complementary over time —
i.e., the intertemporal elasticity of substitution is relatively low, 1/2 = 0.5. In this case,
the consumption smoothing motive is strong and the planner smooths consumption over a
longer period and the convergence to the new steady state is slower than the benchmark
with σ = 1.
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Figure 1: Logistic map: a = 0.9

xt

0 0.5 1

x
t+

1

0

0.2

0.4

0.6

0.8

1

t
0 5 10 15

x
t

0

0.2

0.4

0.6

0.8

1
xt

x∗



Macroeconomics: Problem Set #1 8

Figure 2: Logistic map: a = 1.5

xt

0 0.5 1

x
t+

1

0

0.2

0.4

0.6

0.8

1

t
0 5 10 15

x
t

0

0.2

0.4

0.6

0.8

1

xt

x∗



Macroeconomics: Problem Set #1 9

Figure 3: Logistic map: a = 2.5
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Figure 4: Logistic map: a = 3.0
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Figure 5: Logistic map: a = 3.5
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Figure 6: Logistic map: a = 3.9
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Figure 7: Logistic map: sensitivity to initial conditions x0
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Figure 8: Value function and consumption policy function
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Figure 9: Higher z shifts both v(k) and c(k) up
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Figure 10: Consumption jumps up on impact
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