Macroeconomaics

Lecture 9: dynamic programming methods, part seven

Chris Edmond

1st Semester 2019

This class

e Practical stochastic dynamic programming

— numerical integration to help compute expectations

— using collocation to solve the stochastic optimal growth model

Numerical integration (quadrature)

Consider integral of a function f(x) against weights w(x)

/ f(x)w(x)dx
Often not possible to calculate the integral exactly

Can approximate the integral value by choosing an appropriate set
of quadrature nodes x; and weights w; so that

[f@u@ dz =Y) w

Various procedures for choosing nodes z; and weights w;
(Newton-Cotes, Gaussian, Monte Carlo, etc)

Gaussian quadrature

Choose nodes x; and weights w; to satisty 2n ‘moment conditions’

n
/ka(az) d:U:Zx,]fwi, k=0,..,2n—1
i=1

(2n nonlinear equations in 2n unknowns, nontrivial but standard
routines exist)

If z is a continuous random variable with PDF w(x) then Gaussian
quadrature discretizes x, replacing it with n discrete points x; and
a PMF w; on those discrete points

The discretized version approximates the continuous version in the
sense that the first 2n moments are the same

Gaussian quadrature, 3-point example

e Suppose w(x) = ¢(x), the standard normal density

e Choose 3 nodes and 3 weights to satisty 6 moments

=
I_IO
|

Elz'] =0, E[z”]
3,

X 1, X 17
9] =0, E[z*] = E[z°] = 0

w

e Solution to system of 6 equations in 6 unknowns is

X1 —/3 w1 1/6
i) — 0 , w2 — 2/3
xr3 —|—\/§ w3 1/6

Normal example

e Using CompEcon tools
[x,w] = gnwnorm(n,mu,var)

e Then moments

Elx] = i T W;
i=1

Var|x| = Z riw; — Elx]?
i=1

Lognormal example

e Similarly

[x,w] = gnwlogn(n,mu,var)

Using quadrature: AR1 example

e Suppose we want to compute

E[f(z')] 2]

for some function f(-) that we can evaluate

e And suppose for given z that

= pz+e, e ~ IID N(p,0?)

Using quadrature: AR1 example

e The exact integral is

ELF() |2 = [£z +)o(e) de
(where again ¢(-) denotes the standard normal density)

e We approximate this with the numerical integral
n
E[f(z")|2] =) f(pz+ei)w
i=1

using the quadrature nodes and weights

[epsilon,w] = gnwnorm(n,mu,var)

Quadrature and collocation

e Suppose we want to compute
E[v(2') | 2]

where v(-) is approximated by basis functions

m
v(2') ~ Z aj;(z)
j=1
e Then using quadrature

E[u(=) 2]~ D3 aj5(p2 + =) wy

i=1 j=1

10

Quadrature and collocation

e To calculate this sum, we need to evaluate terms like
pi(pz +¢i)
e Do this using the CompEcon tools, for example
zprime = rho*z+epsilon(i)
then

funeval (a,fspace,zprime)

11

Stochastic growth example

e Let’s solve the Bellman equation

v(k, z) = max { w(f(k, 2) — k') + BE[u(K, 2" | z]}

with the usual specification

flk,z) =2k%+ (1 —=90)k

1l—0

e And let’s suppose that 2’ is an AR(1) in logs

logzlzpzlggz+57 e ~ 11D N(O,Ug)

12

Stochastic growth example

Uses Matlab files in “stochastic growth example.zip” in LMS

$%%%% economic parameters

alpha = 1/3; capital's share in production function

beta = 0.95; %% time discount factor

delta = 0.05; %% depreciation rate

sigma = 1; %% CRRA (=1/IES)

rhoz = 0.95; %% AR1 coefficient, productivity shocks
sigz = 0.1; %% 1nnovation std dev, productivity shocks

13

Productivity shocks

= 29; %
%

for productivity shocks

o® o\

15; number of nodes for quadrature

quadrature nodes and weights

$%%%% grid
nz =
nez =
o

[e]

[ez, wz] =
ez =

zmin =
zmax
zgrid =

gqnwunif (nez,le-9,1-1e-9);
sigz*norminv (ez,0,1);

exp (-4xsgrt (1/ (1-rhoz"2)) *sigz);

= exp(4xsqrt (1/(1-rhoz"2)) xsigz) ;

exp (nodeunif(nz, log(zmin), log(zmax)));

number of breakpoints for z grid

(shocks)

Inverting the uniform nodes gives a bit more control of the tails

14

Capital stock

—_ = = = =

O 0 000

kmin
kmax
kgrid

grid for capital stock

1 linear)

= 99; %% number of breakpoints for k grid
= 0.25; %% (curv = 0 log—-spaced, curv =
= le-3;

= (zmax/delta)”(1/(l-alpha));

= nodeunif (nk, kmin.”curv, kmax.”curv)

N (1/curv) ;

15

Function space for approximations

—_ = = = =

grid
Phi

kgrid

zgrid

kmin
kmax

zmin
zmax

setup state space using CompEcon tools

= fundef ({'spli',
{'spli',

= funnode (fspace) ;
= funbas (fspace);

kgrid}, ...

o

zgrid}); % function space structure

nodes where we solve the problem

Phi_ {13} = phi_7j(k_1)

= grid{l}; % extra 2 poilnts for 3rd-order spline
= grid{2}; % extra 2 points for 3rd-order spline
= kgrid(1l);

= kgrid(end) ;

= zgrid(1l);
= zgrid(end) ;

16

o
(o]
$ matrix of collocation basis vectors
(]
o

Matrix with all combinations of states

$%%%% form collection of states
S = gridmake (grid); % ns-by—-2 matrix where ns=nkxnz
ns = size(s,1);
= S Il)l
Z - (/2)1

17

Matrix with all combinations of states

e For example
S = gridmake([1;2;3],[4;5])

e (Gives the matrix

W NN, WN -
(&2 NG 2 I @ & I SNEY SN AN

18

Initial guess at collocation coefficients

$%%%% 1nitial guess at collocation coefficients "a"
c = alphaxbetaxz.xk.”alpha; % guess for consumption policy
v = log(c)/ (l-beta); % guess for value function

o\°

a = Phi\v; implied collocation coefficients

19

Solve Bellman equation by collocation

—_ = =

solve Bellman equation

for i=l:max_iter;

$%%%% optimal consumption given these coefficints

c = solve_brent('rhs_bellman',s,parameters, a, fspace, cmin, cmax, to
$%5%%% maximlized rhs of Bellman equation

v = rhs_bellman(c, s,parameters, a, fspace); %% v(a)

Numerical routine solve_brent does the maximization

20

1

RHS of the Bellman equation

function y = rhs_bellman(c, s, parameters, a, fspace)

beta = parameters.beta;
sigma = parameters.sigma;

u = utility(c,sigma);
Ev = expected_value (c, s,parameters, a, fspace) ;
y = utbetaxEv;

21

Evaluating E|v(k', 2/) | 2]

function y = expected_value(c, s,parameters, a, fspace)

kprime = z.x(k.”alpha) + (l-delta) xk-c;

for j=1:numel (ez),

zprime = max (min(z.”rhoz.*exp(ez(3j)), zmax), zmin);
sprime = [kprime,zprime];

Ev = Ev+wz (3) *funeval (a, £space, sprime) ;

end

y = Evj;

22

Evaluating E|v(k', 2/) | 2]

e This last step computes
E[v(k',2") | 2]

where v(-) is approximated by basis functions
Ns
v(k',2') ~ Zaiqbi(k’, 2
i=1

e Using quadrature to compute the expectation

ny nNs

E[v(k, 2)| 2] ~ ZZCLZ- ¢i(2k* + (1 —0)k —c, 2P)w;

j=1 i=1

23

Updating coefficients

Jacobian = 0;

0. 0 0 O O

$%%%% 1mplied by optimal consumption
kprime = z.x(k.”alpha) + (l-delta) xk-c;

%$%%%% build up Jacobian matrix of v (a)
for j=1:numel (ez),

zprime = max (min(z.”"rhoz.*exp(ez(3j)), zmax), zmin);
sprime = [kprime, zprime];

Jacobian = Jacobiantbeta*wz (j)*funbas (fspace, sprime);
end

$%5%5%% Newton's method

anew = a — (Phi-Jacobian) \ (Phixa-v) ;

24

Check if converged

$%%%% check 1f converged
error = norm(anew—-a,inf);
fprintf ('%41i %6.2e \n', [1, error]);

1f error<tol, break, end;

$%%%% 1f not converged, update and try agailn
a = anew;
end

25

Reshape solution

$%%%% reshape solution

Nk = numel (kgrid);
Nz = numel (zgrid);

VV = reshape(v,Nk,Nz),; %% VV = v(k_1,z_7)
CC = reshape(c,Nk,Nz); %% CC = c(k_1,z_7)

$%%%% optimal policy k'=g(k, z)
GG = reshape (kprime,Nk,Nz); %% GG = g(k_1,z_7)

As usual with collocation methods, can also now interpolate as needed

26

value function

20 |

Value function v(k, z) for various z

60 I I I

-30 | | | | |

0 100 200 300 400 500
capital stock

27

600

Policy function k' = ¢g(k, z) for various 2

60 I I I I I

50 v i

40 .

policy function
wW
o
I
|

20 =

10 |- .

0 | | | | |
0 10 20 30 40 50 60

capital stock

28

Next class

e Dynamic programming applications

29

