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This class

• Stochastic optimal growth model

– sequential approach using histories and contingent plans

– recursive approach using dynamic programming

– some background on Markov chains
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Sequence problem

• Stochastic optimal growth model

max
{ct,kt+1}1t=0

E
( 1X

t=0

�
t
u(ct)

)
, 0 < � < 1

subject to the sequence of constraints, with productivity shock zt,

ct , kt+1 � 0, and ct + kt+1  ztf(kt)

with the given initial conditions

k0 , z0 > 0

• Problem takes as an input an exogenous stochastic process for {zt}

• Delivers endogenous stochastic processes {ct} and {kt}
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Choices

• In the deterministic problem, choose deterministic sequences

• In the stochastic problem, choose stochastic processes that can be
interpreted as contingent plans
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Histories

• Let z
t denote a history of realizations of the shock up to and

including date t

z
t ⌘ (z0 , z1 , . . . , zt) = (zt�1

, zt)

• Let ct(zt) and kt+1(zt) denote contingent plans for consumption
and capital accumulation conditional on z

t

• History of realizations z
t known at t but unknown as of t = 0

• So ct(zt) and kt+1(zt) unknown as of t = 0
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Expected utility

• Outcomes are ranked according to the expected utility criterion

E
( 1X

t=0

�
t
u(ct)

)

• Involves taking expectations with respect to the probability
distribution of the random variable {ct(zt)}1t=0

• For simplicity, let zt be a discrete random variable and let ⇡t(zt)
denote the probability of zt as of date t = 0. Then

E
( 1X

t=0

�
t
u(ct)

)
=

1X

t=0

X

zt

�
t
u(ct(z

t))⇡t(z
t)
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Sequence problem

• Stochastic optimal growth model restated

max
{ct(zt),kt+1(zt)}1t=0

1X

t=0

X

zt

�
t
u(ct(z

t))⇡t(z
t)

subject to the sequence of resource constraints

ct(z
t) + kt+1(z

t)  zt(z
t)f(kt(z

t�1)), for all zt

and the non-negativity conditions

ct(z
t) , kt+1(z

t) � 0, for all zt

• Takes as given the sequence of probabilities ⇡t(zt), the initial
conditions k0, z0 > 0 etc
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Lagrangian approach

• Lagrangian with stochastic multiplier �t(zt) � 0 for each constraint

L =
1X

t=0

X

zt

�
t
u(ct(z

t))⇡t(z
t)

+
1X

t=0

X

zt

�t(z
t)
⇥
zt(z

t)f(kt(z
t�1))� ct(z

t)� kt+1(z
t)
⇤

• First order condition for ct(zt) can be written

�
t
u
0(ct(z

t))⇡t(z
t) = �t(z

t)

• First order condition for kt+1(zt) can be written

�t(z
t) =

X

z0 | zt
�t+1(z

t
, z

0)
⇥
zt+1(z

t
, z

0)f 0(kt+1(z
t))

⇤

where the sum is taken over all states z
0 that immediately follow z

t
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Lagrangian approach

• Eliminating the Lagrange multipliers gives

u
0(ct(s

t)) = �

X

z0 | zt
u
0(ct+1(z

t
, z

0))
⇥
zt+1(z

t
, z

0)f 0(kt+1(z
t))

⇤⇡t+1(zt, z0)

⇡t(zt)

• To interpret this condition, notice that

⇡t+1(zt, z0)

⇡t(zt)
= Prob[z0 | zt]

• This is the conditional probability of zt+1 = z
0 given the history z

t

• Thus RHS involves a conditional expectation
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Consumption Euler equation

• In more familiar time-series notation, this is just

u
0(ct) = �Et{u0(ct+1)zt+1f

0(kt+1)}

• A stochastic version of the consumption Euler equation
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Markov processes

• A (first-order) Markov process has the property that, conditional
on the current zt, future realizations are independent of zt�1. In
this sense, the current zt is a sufficient statistic for the past

• Markov processes are recursive, and so are a natural setting for
dynamic programming approaches

• To begin with, let’s consider zt with discrete support, usually
referred to as a Markov chain

• As we will see, Markov processes with continuous support have a
similar structure
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Markov chains

• A finite Markov chain is a triple ( z , P ,  0 ) where

z is an n-vector listing the possible states (outcomes) of the chain

P is an n⇥ n probability transition matrix

 0 is an n-vector recording the initial distribution over the states

• Restrictions

0  pij  1, and
nX

j=1

pij = 1 for all i = 1, ..., n

0   0,i  1, and
nX

i=1

 0,i = 1
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Interpretation

• Consider stochastic process {zt} induced by a Markov chain

• A realization of zt takes on the value of one of the states in z

• Elements pij of the transition matrix P have interpretation

pij = Prob[zt+1 = zj | zt = zi]

• Elements  0,i of the initial distribution  0 have interpretation

 0,i = Prob[z0 = zi]
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Transitions

• Let the vector  t be the distribution over z at t, with elements

 t,i = Prob[zt = zi]

• Using the transition probabilities gives

 1,i =
nX

j=1

Prob[z1 = zi | z0 = zj ]Prob[z0 = zj ]

...

 t+1,i =
nX

j=1

Prob[zt+1 = zi | zt = zj ]Prob[zt = zj ]
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Transitions

• Collecting these together in matrix notation, we see that

 1 = P> 0

...

 t+1 = P> t, t = 0, 1, ...

where P> denotes the transpose of P

• Evolves according to a deterministic difference equation

• Iterating forward from date t = 0 we have

 t = (P>)t 0
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Stationary distributions

• Stationary distribution  ⇤ of Markov chain satisfies

 ⇤ = P> ⇤

( i.e., a fixed point of the difference equation  t+1 = P> t )

• Writing this as

(I � P>) ⇤ = 0

we see  ⇤ is an eigenvector of P> associated with a unit-eigenvalue

• Requirement that
P

i  
⇤
i = 1 is a normalization of the eigenvector
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Uniqueness and stability (sketch)

• Generally P> has n eigenvalues

• Since P is a transition matrix, P> has at least one unit-eigenvalue

• But may have multiple unit-eigenvalues, hence multiple stationary
distributions

• Moreover even if there is a unique stationary distribution, iterates
 t+1 = P> t may not converge to it

• A sufficient condition for a unique stable stationary distribution is
that 0 < pij < 1 for all i, j
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2⇥ 2 example

• Consider two state Markov chain with transition matrix

P =

0

@
1� p p

q 1� q

1

A

• Stationary distribution solves (note the transpose)
2

4

0

@
1 0

0 1

1

A�

0

@
1� p q

p 1� q

1

A

3

5

0

@
 
⇤
1

 
⇤
2

1

A =

0

@
0

0

1

A

• Gives
0

@
 
⇤
1

 
⇤
2

1

A =

0

BB@

q

p+ q

p

p+ q

1

CCA

(e.g., q ! 0 makes state 2 absorbing and state 1 transient, etc)
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Markov chains with continuous support

• We can also consider Markov chains with continuous support

• Suppose zt has continuous support with density  t(z)

• Intuitively

 t+1(z
0) =

Z
p(z0 | z) t(z) dz

where p(z0 | z) is density for zt+1 = z
0 conditional on zt = z

• A stationary density  ⇤(z) satisfies the fixed point condition

 
⇤(z0) =

Z
p(z0 | z) ⇤(z) dz

• There is an analogous theory of uniqueness, stability etc for  ⇤(z)
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AR(1) example

• Suppose {zt} is a linear Gaussian AR(1) process

zt+1 = (1� ⇢)µ+ ⇢zt + �"t+1, "t+1 ⇠ IID N(0, 1)

• Then

p(z0 | z) = 1

�
�

✓
z
0 � (1� ⇢)µ� ⇢z

�

◆

where �(") is the PDF of the standard normal distribution

�(") ⌘ 1p
2⇡

e
�"2/2
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AR(1) example

• If |⇢| < 1, then a unique, stable stationary density

 
⇤(z) =

1

�⇤
�

✓
z � µ

�⇤

◆

where

�
⇤ =

�p
1� ⇢2
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Stochastic dynamic programming

• Suppose zt is first-order Markov with conditional density

⇡(z0 | z)

• Bellman equation for this problem

v(k, z) = max
k0

h
u(zf(k)� k

0) + �

Z
v(k0, z0)⇡(z0 | z) dz0

i

• First order condition for k
0

u
0(zf(k)� k

0) = �

Z
vk(k

0
, z

0)⇡(z0 | z) dz0

• Envelope condition

vk(k, z) = u
0(zf(k)� k

0)zf 0(k)
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Stochastic dynamic programming

• Eliminating vk(k0, z0) using the envelope condition then gives

u
0(zf(k)� k

0) = �

Z
u
0(z0f(k0)� k

00)z0f 0(k0)⇡(z0 | z) dz0

which, in our usual time-series notation, is just

u
0(ct) = �Et{u0(ct+1)zt+1f

0(kt+1)}

where it is understood that ct = ztf(kt)� kt+1 etc.
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Stochastic dynamic programming

• Let k
0 = g(k, z) be the optimal policy that solves this dynamic

programming problem

• This is a stochastic difference equation of the form

kt+1 = g(kt, zt)

• We cannot expect {kt} to converge to some steady state k
⇤

• What about the distribution of k?
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IID example

• Suppose policy function has the multiplicative form kt+1 = ztg(kt)
and that zt is IID over time with cumulative distribution

H(z) ⌘ Prob[ zt  z ]

• Now consider the cumulative distribution of k at time t

 t(k) ⌘ Prob[ kt  k ]

• For example, for t = 1 we have

 1(k) = Prob[ k1  k ]

= Prob[ z0g(k0)  k ] = Prob
⇥
z0 

k

g(k0)

⇤

= H
� k

g(k0)

�
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IID example

• Let P (k0 | k) denote the conditional distribution

P (k0 | k) ⌘ Prob[ kt+1  k
0 | kt = k]

• For this IID example, we have

P (k0 | k) = H
� k

0

g(k)

�

• Then cumulative distribution of k satisfies the law of motion

 t+1(k
0) =

Z
P (k0 | k) d t(k)

• So that if there is a density representation

 t+1(k
0) =

Z
p(k0 | k) t(k) dk
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IID example

• A stationary density  ⇤(k) is a fixed point of this law of motion

 
⇤(k0) =

Z
p(k0 | k) ⇤(k) dk

• More generally, we would have a joint distribution over the state
variables (k, z) induced by (i) the policy function k

0 = g(k, z) and
(ii) the exogenous conditional density ⇡(z0 | z)

• We would then look for a fixed point for that joint distribution

• We’ll see lots of examples of this
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Next class

• Practical stochastic dynamic programming problems

– numerical integration to help compute expectations

– extending our collocation tricks
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