Macroeconomaics

Lecture 8: dynamic programming methods, part six

Chris Edmond

1st Semester 2019



This class

e Stochastic optimal growth model

— sequential approach using histories and contingent plans
— recursive approach using dynamic programming

— some background on Markov chains



Sequence problem

e Stochastic optimal growth model

max E{Zﬁtu(ct)}, 0<pB <1
t=0

{ct.ke+1152,

subject to the sequence of constraints, with productivity shock 2z,
¢t , kiy1 >0, and ct + ki1 < zef (ki)

with the given initial conditions
ko, zo >0

e Problem takes as an input an exogenous stochastic process for {z;:}

e Delivers endogenous stochastic processes {c;} and {k;}



Choices

e In the deterministic problem, choose deterministic sequences

e In the stochastic problem, choose stochastic processes that can be
interpreted as contingent plans



Histories

Let 2! denote a history of realizations of the shock up to and
including date ¢

ZtE<ZO7Z17 7Zt):(zt_1azt)

Let c;(2%) and k;y1(2?) denote contingent plans for consumption
and capital accumulation conditional on z?!

History of realizations z! known at ¢t but unknown as of t = 0

So ¢i(2!) and k;y1(2!) unknown as of t =0



Expected utility

e Qutcomes are ranked according to the expected utility criterion

E {Z Ik u(ct)}
t=0

e Involves taking expectations with respect to the probability
distribution of the random variable {c;(2*)}2,

e For simplicity, let 2; be a discrete random variable and let m;(2%)
denote the probability of 2! as of date ¢t = 0. Then

E {Z 3t u(ct)} =) ) Brufe(zh)) m(2h)
t=0

t=0 3t



Sequence problem

e Stochastic optimal growth model restated

max > Brule(2h)) m(z")

lee(@) ke (2120 120 4
subject to the sequence of resource constraints

ce(2)) + ki1 (2Y) < 2 (28 F (ke (2271)), for all z*
and the non-negativity conditions

ci(2Y), keyr(2Y) >0, for all 2

e Takes as given the sequence of probabilities m;(z!), the initial
conditions kg, zg > 0 etc



Lagrangian approach
e Lagrangian with stochastic multiplier \;(2*) > 0 for each constraint

L= ) Bulc(z"))m(z")

t=0 2zt

+ Z > Mz ) (Re(2'71)) = ce(2") = Kga (29)]

t=0 2t

e First order condition for ¢;(z!) can be written
B’ (cr(2"))me(2") = M(2")
e First order condition for ;11 (2") can be written
)\t(zt) = Z )\t+1(2tazl) [Zt+1(2taZ/)f/(ktﬂ(zt))]
2| 2t

where the sum is taken over all states 2z’ that immediately follow z?!
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Lagrangian approach

Eliminating the Lagrange multipliers gives

u(ci(s?) = Z u' (1 (2", 2") 261 (25, 2) F (Reyn ()] WtJ;Tlt(é;)Z/)
2| 2t

To interpret this condition, notice that

Tt+1 (Zta Zl)
Wt(Zt)

— Prob[2’ | ]

This is the conditional probability of 211 = 2’ given the history 2!

Thus RHS involves a conditional expectation



Consumption Euler equation

e In more familiar time-series notation, this is just

u'(ct) = BEAu (cta1)zea1 [/ (ker1) }

e A stochastic version of the consumption Euler equation
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Markov processes

A (first-order) Markov process has the property that, conditional
on the current z;, future realizations are independent of z!~!. In
this sense, the current z; is a sufficient statistic for the past

Markov processes are recursive, and so are a natural setting for
dynamic programming approaches

To begin with, let’s consider z; with discrete support, usually
referred to as a Markov chain

As we will see, Markov processes with continuous support have a
similar structure
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Markov chains
e A finite Markov chain is a triple (z, P, ¥, ) where

z is an n-vector listing the possible states (outcomes) of the chain
P is an n X n probability transition matrix

1, 1s an n-vector recording the initial distribution over the states

e Restrictions

and sz-j =1 foralli=1,...,n
j=1

n
0<vo; <1, and > 4g;=1
=1
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Interpretation

Consider stochastic process {z;} induced by a Markov chain
A realization of z; takes on the value of one of the states in z

Elements p;; of the transition matrix P have interpretation
pij = Problziy1 = 25 | 2t = z]
Elements 1) ; of the initial distribution 1, have interpretation

Zpoﬂ' — Prob[zo — Zz]
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Transitions

e Let the vector 1, be the distribution over z at ¢, with elements
Yt = Prob|zy = 2]

e Using the transition probabilities gives

1 = Z Prob|z; = z; | z0 = 2z;] Prob|zp = 2]
j=1

mn
Yry1i = Z Prob|zi41 = 2; | 2t = z;] Prob|z: = 2]
j=1
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Transitions

e (Collecting these together in matrix notation, we see that

’901 :PTTPO

¢t—|—1 :PT¢t7 t:O, 1,...

where P' denotes the transpose of P
e Evolves according to a deterministic difference equation

e [terating forward from date t = 0 we have

¢’t — (PT)t‘pO
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Stationary distributions

e Stationary distribution @™ of Markov chain satisfies
(i.e., a fixed point of the difference equation ¥, ; = Py, )

e Writing this as
(I-P )y =0
we see ¥* is an eigenvector of P! associated with a unit-eigenvalue

e Requirement that ) . 1F =1 is a normalization of the eigenvector
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Uniqueness and stability (sketch)

e Generally P' has n eigenvalues
e Since P is a transition matrix, P ' has at least one unit-eigenvalue

e But may have multiple unit-eigenvalues, hence multiple stationary
distributions

e Moreover even if there is a unique stationary distribution, iterates
Vi1 = PTv,bt may not converge to it

e A sufficient condition for a unique stable stationary distribution is
that 0 < p;; <1 forall 7,7
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2 X 2 example
e Consider two state Markov chain with transition matrix

l=p p
P =
¢ 1l—q
e Stationary distribution solves (note the transpose)

1 0 1—p q (Ph 0
|\ 0 1 D l1—q /)| V5 0
e Gives
(0N (erq
i b
\ P+ q )

(e.g., ¢ — 0 makes state 2 absorbing and state 1 transient, etc)
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Markov chains with continuous support

We can also consider Markov chains with continuous support
Suppose z; has continuous support with density 1;(2)

Intuitively

drn() = [0 120 () d:

where p(z’| z) is density for z;11 = 2z’ conditional on z; = 2

A stationary density ¢*(z) satisfies the fixed point condition
W) = [ bl |20 () s

There is an analogous theory of uniqueness, stability etc for *(2)
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AR(1) example

e Suppose {z:} is a linear Gaussian AR(1) process
i1 = (1 — p)p + pze + o€p11, err1 ~ 11D N(0,1)

e Then

o' 1) = 2o (T U2 0)

0

where ¢(g) is the PDF of the standard normal distribution
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AR(1) example

e If [p| < 1, then a unique, stable stationary density

0@ = o (22F)

where
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Stochastic dynamic programming

Suppose z; is first-order Markov with conditional density

m(2'] 2)

Bellman equation for this problem

k’+5/

v(k,z) = max | u [ (zf

First order condition for &’

W (zF(k) — k) = ﬂ/vkkz

Envelope condition

ve(k, 2) = ' (2f (k)

— K')zf' (k)
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Stochastic dynamic programming

e Eliminating v (k’, z’) using the envelope condition then gives
u'(zf(k) — k') = B/u’(z’f(k’) — KN I (E) 72| 2) d2’
which, in our usual time-series notation, is just

v (c;) = BEAU (coo1)zear f (k1))

where it is understood that ¢; = z:f (k) — ki1 ete.
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Stochastic dynamic programming

Let k' = g(k, z) be the optimal policy that solves this dynamic
programming problem

This is a stochastic difference equation of the form

ki1 = g(ke, 2¢)

We cannot expect {k;} to converge to some steady state k*

What about the distribution of k°
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IID example

e Suppose policy function has the multiplicative form ki1 = z:g(k)
and that z; 1s IID over time with cumulative distribution

H(z) = Prob|z; < z]

e Now consider the cumulative distribution of £ at time ¢
Uy (k) = Prob|k; < k]

e For example, for ¢t = 1 we have

U, (k) = Prob[ k1 < k]

k
= Prob[z0g(ko) < k] = Prob| 2 < g(ko) ]
k
_ H(g(k()))
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IID example
Let P(K'| k) denote the conditional distribution
Pk | k) = Prob[ ki < K | ky = K]
For this 1ID example, we have

k/
g(k))

Then cumulative distribution of k satisfies the law of motion

P(K |k) = H(

Ty () = / P(K | k) d, (k)

So that if there is a density representation
v (k) = [ o | ) (k) di
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IID example

A stationary density ¢*(k) is a fixed point of this law of motion

W) = [ 90 1) (k)
More generally, we would have a joint distribution over the state
variables (k, z) induced by (i) the policy function k' = g(k, z) and
(ii) the exogenous conditional density (2’| 2)

We would then look for a fixed point for that joint distribution

We'll see lots of examples of this
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Next class

e Practical stochastic dynamic programming problems

— numerical integration to help compute expectations

— extending our collocation tricks
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