Macroeconomics

Lecture 7: dynamic programming methods, part five

Chris Edmond

1st Semester 2019

This class

- A more flexible approach to practical dynamic programming
- Use techniques for function interpolation and approximation
- In particular, a method known as *collocation*
- Details implemented using CompEcon toolkit for Matlab

Main idea

• Bellman equation for the optimal growth model

$$v(k) = \max_{c \ge 0} \left[u(c) + \beta v(f(k) - c)) \right]$$

where k' = f(k) - c denotes the capital stock chosen for next period

• Suppose we can write

$$v(k) \approx \sum_{j=1}^{n} a_j \phi_j(k)$$

using n known basis functions $\phi_j(k)$ with coefficients a_j

Main idea

- Solve for n coefficients a_j by solving Bellman equation at n given collocation nodes k_i for i = 1, ..., n
- That is, find n coefficients a_j such that

$$\sum_{j=1}^{n} a_j \phi_j(k_i) = \max_{c \ge 0} \left[u(c) + \beta \sum_{j=1}^{n} a_j \phi_j(f(k_i) - c)) \right], \qquad i = 1, ..., n$$

• This is a system of n nonlinear equations in n unknowns

Notation

• Let Φ_{ij} denote the elements of the *collocation matrix*

$$\Phi_{ij} = \phi_j(k_i), \quad i, j = 1, ..., n$$

To form this we need the n basis functions and n nodes

• LHS of Bellman equation is then

Φa

• RHS of Bellman equation is a vector-valued function $\boldsymbol{v}(\boldsymbol{a})$ with typical element

$$v_i(\boldsymbol{a}) = \max_{c \ge 0} \left[u(c) + \beta \sum_{j=1}^n a_j \phi_j(f(k_i) - c)) \right], \quad i = 1, ..., n$$

Notice that in this formulation $v_i(\cdot)$ is a known function

Collocation equation

• In short, want to find vector \boldsymbol{a} that solves *collocation equation*

 $\Phi a = v(a)$

• For example, can do *function iteration* on the coefficients by

$$a^{l+1} = \Phi^{-1}v(a^l), \qquad l = 0, 1, 2, \dots$$

starting from some a^0 and iterating until

$$\|\boldsymbol{a}^{l+1} - \boldsymbol{a}^{l}\| = \max_{i} \left[\left| a_{i}^{l+1} - a_{i}^{l} \right| \right] < \varepsilon$$

for some some pre-specified tolerance $\varepsilon > 0$

• Can often improve on this using *Newton's method* (or variants)

Aside on Newton's method

- Suppose we want to find a root x such that f(x) = 0 for some $f(\cdot)$
- Let x^0 be an initial guess and suppose $f(x^0) \neq 0$
- Consider first-order approximation of f(x) around x^0

$$f(x) \approx f(x^0) + f'(x^0)(x - x^0)$$

• Then find x^1 such that this linear approximation is zero

$$x^{1} = x^{0} - f'(x^{0})^{-1} f(x^{0})$$

And

$$x^{l+1} = x^l - f'(x^l)^{-1} f(x^l), \qquad l = 0, 1, 2, \dots$$

Aside on Newton's method

• Similar idea for vector-valued functions

$$f(x) \approx f(x^0) + f'(x^0)(x - x^0)$$

where $f'(x^0)$ is the Jacobian of f(x) evaluated at x^0 — i.e., the matrix of partial derivatives of the form

$$\frac{\partial f_i(\boldsymbol{x}^0)}{\partial x_j}, \qquad i, j = 1, ..., n$$

where $f_i(\boldsymbol{x})$ denotes the typical element of the vector $\boldsymbol{f}(\boldsymbol{x})$

• Implies iterative scheme

$$x^{l+1} = x^l - f'(x^l)^{-1} f(x^l), \qquad l = 0, 1, 2, \dots$$

Applying Newton's method to our problem

• For our problem we are trying to find \boldsymbol{a} such that

$$f(a) \equiv \Phi a - v(a) = 0$$

• The Jacobian of $\boldsymbol{f}(\boldsymbol{a})$ is the matrix

$$f'(a) = \mathbf{\Phi} - v'(a)$$

• Implies iterative scheme

$$a^{l+1} = a^l - [\Phi - v'(a^l)]^{-1} [\Phi a^l - v(a^l)], \qquad l = 0, 1, 2, \dots$$

Applying Newton's method to our problem

• The Jacobian of $\boldsymbol{v}(\boldsymbol{a})$ has elements

$$\frac{\partial v_i(\boldsymbol{a})}{\partial a_j} = \beta \,\phi_j(f(k_i) - c(k_i \,;\, \boldsymbol{a}))$$

• This uses the Envelope theorem — i.e, we can ignore the indirect effects of a_j that come through the optimal policy

$$c(k_i; \boldsymbol{a}) = \operatorname*{argmax}_{c \ge 0} \left[u(c) + \beta \sum_{j=1}^n a_j \phi_j(f(k_i) - c)) \right]$$

- To implement this, we need to choose a *basis-node* scheme
- Common choices include *Chebychev polynomials* and piecewise polynomial *splines*

Chebychev polynomials

• For some $x \in [a, b]$ the *j*th basis function is

$$\phi_j(x) = P_{j-1}(z), \qquad z = 2\frac{x-a}{b-a} - 1$$

where the polynomials on $z \in [-1+1]$ are given by

$$P_0(z) = 1$$

$$P_1(z) = z$$

$$P_2(z) = 2z^2 - 1$$

•

$$P_j(z) = 2zP_{j-1}(z) - P_{j-2}(z), \qquad j = 2, 3, \dots$$

Chebychev polynomials

Linear splines

• For some $x \in [a, b]$ with n evenly-spaced breakpoints t_j

$$\phi_j(x) = \begin{cases} 1 - \frac{|x - t_j|}{h} & \text{if } |x - t_j| < h \\ 0 & \text{otherwise} \end{cases}$$

where the breakpoints are

$$t_j = a + (j-1)h$$

and where h is the distance between any pair of breakpoints

$$h = \frac{b-1}{n-1}$$

• In practice choose interpolation nodes x_1, \ldots, x_n to coincide with breakpoints t_1, \ldots, t_n so that $\phi_j(x_i) = 1$ if i = j and zero otherwise

Linear splines

Cubic splines

- Linear splines are a series of line segments spliced together to form a continuous function
- Cubic splines are a series of cubic polynomials spliced together to form a twice continuously differentiable function
- Cubic splines a natural basis for approximating smooth functions

Cubic splines

Approximating $f(x) = 1 + x + 2x^2 - 3x^3$

Approximating $f(x) = \exp(-x)$

Approximating $f(x) = 1/(1+25x^2)$

Approximating $f(x) = \sqrt{x}$ $|\mathcal{X}|$

CompEcon toolkit

http://www4.ncsu.edu/~pfackler/compecon/toolbox.html

- Contains many computational tools, including for collocation
- For example

```
fspace = fundef({'spli', breaks})
```

- This creates a function structure using piecewise polynomial splines for basis functions on the breakpoints in **breaks**
- By default 'spli' uses cubic splines
- Subtle differences in syntax, depending on basis family

CompEcon toolkit

• Grid of evaluation nodes

grid = funnode(fspace)

• Collocation matrix

Phi = funbas(fspace)

• Interpolation coefficients for function y = f(x) on fspace

a = funfitxy(fspace,x,y)

Collocation example

Uses Matlab files in "collocation_example.zip" in LMS

```
%%%%% economic parameters
alpha = 1/3; %% capital's share in production function
beta = 0.95; %% time discount factor
delta = 0.05; %% depreciation rate
sigma = 1; %% CRRA (=1/IES)
rho = (1/beta)-1; %% implied rate of time preference
kstar = (alpha/(rho+delta))^(1/(1-alpha)); %% steady state
kbar = (1/delta)^(1/(1-alpha));
```

Parameter structure

```
%%%%% put in a structure to pass to other functions
parameters.alpha = alpha;
parameters.beta = beta;
parameters.delta = delta;
parameters.sigma = sigma;
```

Breakpoints for splines

0000000	set up grid of	capital stock
n	= 99;	%% number of breakpoints for k grid
kmin	= tol;	%% effectively zero
kmax	= kbar;	%% effective upper bound
curv	= 0.5;	%% (curv = 0 log-spaced, curv = 1 linear)
breaks	= nodeunif()	n, kmin.^curv, kmax.^curv).^(1/curv);

Breakpoints not evenly spaced. Will be n + 2 collocation nodes

Function space for approximations

%%%%% setup state space using CompEcon tools					
fspace	=	fundef({'spli', k	oreaks}); %% function space structure		
grid Phi	=	<pre>funnode(fspace); funbas(fspace);</pre>	<pre>% nodes where we solve the problem % matrix of collocation basis vectors % Phi_{ij} = phi_j(k_i)</pre>		
k	=	grid;	% grid has n+2 elements		

Initial guess at collocation coefficients

0000000	initial guess at collo	cation coefficients "a"
C V	<pre>= alpha*beta*k.^alpha; = log(c)/(1-beta);</pre>	% guess for consumption policy % guess for value function
a	= Phi\v;	% implied collocation coefficients

Solve Bellman equation by collocation

```
%%%%% solve Bellman equation
for i=1:max_iter;
%%%%% optimal consumption given coefficients "a"
c = solve_brent('rhs_bellman',k,parameters,a,fspace,cmin,cmax,tol)
%%%%% maximized rhs of Bellman equation
v = rhs_bellman(c,k,parameters,a,fspace); %% v(a)
```

Numerical routine solve_brent does the maximization

RHS of the Bellman equation

```
function y = rhs_bellman(c,s,parameters,a,fspace)
```

```
beta = parameters.beta;
```

```
sigma = parameters.sigma;
```

```
u = utility(c, sigma);
```

```
Ev = expected_value(c,s,parameters,a,fspace);
```

y = u+beta*Ev;

Utility function

Evaluating $v(k') = \sum_{j} a_{j} \phi_{j}(k')$

```
function v = value(c,k,parameters,a,fspace)
alpha = parameters.alpha;
delta = parameters.delta;
kprime = (k.^alpha) + (1-delta)*k-c;
v = funeval(a,fspace,kprime);
```

Basis function $\phi_j(\cdot)$ evaluated at some k' not nodes k_i

Updating coefficients

```
%%%%% updated collocation coefficients
if do_newton == 1,
%%%%% implied by optimal consumption
kprime = (k.^{alpha}) + (1-delta) * k-c;
%%%%% Jacobian matrix of v(a)
Jacobian = beta*funbas(fspace,kprime);
%%%%% Newton's method
anew = a - (Phi-Jacobian) \setminus (Phi * a - v);
else
     = Phi\v;
anew
end
```

Check if converged

```
%%%%% check if converged
error = norm(anew-a, inf);
fprintf('%4i %6.2e \n',[i, error]);
if error<tol, break, end;</pre>
%%%%% if not converged, update and try again
a = anew;
end
```

Interpolation on finer grid

```
%% for c(k)
c_coeff = funfitxy(fspace, s, c);
g_coeff = funfitxy(fspace, s, kprime); %% for g(k)=k'
%%%%% interpolate on finer grid
%%%%% finer grid
kfine = nodeunif(N, kmin.^curv, kmax.^curv).^(1/curv);
%%%% interpolated value function
vfine = funeval(a,fspace,kfine);
%%%%% interpolation coefficients for c(k)
      = funfitxy(fspace, k, c);
ac
```

With solution in hand, can interpolate as needed

Next class

• Stochastic dynamic programming