Macroeconomaics

Lecture 7: dynamic programming methods, part five

Chris Edmond

1st Semester 2019

This class

A more flexible approach to practical dynamic programming
Use techniques for function interpolation and approximation
In particular, a method known as collocation

Details implemented using CompEcon toolkit for Matlab

Main idea

e Bellman equation for the optimal growth model

v(k) = max |u(c) + Bu(f(k) —c))]

c>0

where k' = f(k) — ¢ denotes the capital stock chosen for next period

e Suppose we can write
n
(k) =) aje;(k)
j=1

using n known basis functions ¢;(k) with coefficients a;

Main idea

e Solve for n coeflicients a; by solving Bellman equation at n given
collocation nodes k; for 1 =1,...,n

e That is, find n coeflicients a; such that

> ajo(ki) = max [u(e)+8Y a;éy(f(k)—c) |, i=1,..n
j=1 j=1

c>0

e This is a system of n nonlinear equations in n unknowns

Notation

e Let ®;; denote the elements of the collocation matrix

(I)z'j — gbj(k@), i,j — 1, ceeg 1

To form this we need the n basis functions and n nodes

e LHS of Bellman equation is then
Pa

e RHS of Bellman equation is a vector-valued function v(a) with
typical element

v;(@) = max [u(c)—l—ﬁz a; i (fk)—¢)], i=1,..n

c>0

Notice that in this formulation v;(-) is a known function

Collocation equation

e In short, want to find vector a that solves collocation equation
$ba = v(a)
e For example, can do function iteration on the coefficients by
atl = d tu(ad), [=0,1,2,...
starting from some a’ and iterating until

Hal—i—l

—ad| :m_ax[\a,lfl —a,li]] <e€
1
for some some pre-specified tolerance € > 0

e Can often improve on this using Newton’s method (or variants)

Aside on Newton’s method

e Suppose we want to find a root z such that f(x) = 0 for some f(-)
e Let ¥ be an initial guess and suppose f(z?) # 0

e Consider first-order approximation of f(z) around "
fl@) = f(2°) + f(a”)(z — 2°)
e Then find z' such that this linear approximation is zero
vt =a" — f'(a") 7" f(a")
And

o =gt — (DT F(2h), [=0,1,2,...

Aside on Newton’s method

Similar idea for vector-valued functions

fx) ~ f(a’) + f'(z”)(z — a°)

where f/(z') is the Jacobian of f(x) evaluated at = — i.e., the
matrix of partial derivatives of the form

0 fi(x")

9
8$j

1,7 =1,...,n

where f;(ax) denotes the typical element of the vector f(x)

Implies iterative scheme

et =gl — f(2H7 f(2h), [1=0,1,2,...

Applying Newton’s method to our problem

e For our problem we are trying to find a such that
fla)=®Pa—v(a)=0

e The Jacobian of f(a) is the matrix
f'(a) = ® - v'(a)

e Implies iterative scheme

atl=a'—[® -V (a)] ! ®d —v(ad))], [=0,1,2,...

Applying Newton’s method to our problem

The Jacobian of v(a) has elements

ov;(a)

o = POs(f (k) = clki; @)

This uses the Envelope theorem — i.e, we can ignore the indirect
eflects of a; that come through the optimal policy

c(ki; @) = argmax |u() + 8 a; 6;(/ (ki) —)

c>0
To implement this, we need to choose a basis-node scheme

Common choices include Chebychev polynomials and piecewise
polynomial splines

10

Chebychev polynomials

e For some x € |a,b| the jth basis function is

r — a

b—a

oj(x) = Pj1(2), z2=2 —1

where the polynomials on z € [—1 + 1] are given by

11

Chebychev polynomials

Chebychev Polynomial Basis Functions
1F

1

-
o
-
o

12

- L

Linear splines

e For some z € |a, b] with n evenly-spaced breakpoints ;

(et

b;(x) = 4 L

L 0 otherwise

if’:l]—tj‘<h

where the breakpoints are
tj =a-+ (] — 1)h

and where h is the distance between any pair of breakpoints

b—1
h =
n—1
e In practice choose interpolation nodes z1,...,x, to coincide with
breakpoints t1, ..., %, so that ¢;(x;) =1 if i« = j and zero otherwise

13

Linear splines

Linear Spline Basis Functions

1F - 1F
0 0
1 1
0 0
1 1
0 0
0 1

14

— L

Cubic splines

e Linear splines are a series of line segments spliced together to form
a continuous function

e (ubic splines are a series of cubic polynomials spliced together to
form a twice continuously differentiable function

e (Cubic splines a natural basis for approximating smooth functions

15

Si%

o
-

Cubic splines

1

Cubic Spline Basis Functions

DA

16

Approximating f(x) =1

Function
-0.5 0 0.5
Cubic Spline
-0.5 0] 0.5

T+ 222 — 3x°

Chebychev

Linear Spline

17

Approximating f(x) = exp(—x)

Function Chebychev

Cubic Spline Linear Spline

18

Approximating f(x) =1/(1

Function

251%)

Chebychev

Cubic Spline

Linear Spline

19

0.5 1

0.8

0.6 -

04+

0.2+

0.8

0.6 |

04+

0.2+

Approximating f(x) = /||

Function
-0.5 0] 0.5
Cubic Spline
-0.5 0] 0.5

0.8

0.6

0.4+

0.2+

0.8+

0.6

0.4+

0.2+

20

Chebychev

Linear Spline

0.5

0.5

CompEcon toolkit

http://wwwéd.ncsu.edu/ "pfackler/compecon/toolbox.html
Contains many computational tools, including for collocation

For example
fspace = fundef({'spli', breaks})

This creates a function structure using piecewise polynomial
splines for basis functions on the breakpoints in breaks

By default 'spli' uses cubic splines

Subtle differences in syntax, depending on basis family

21

CompEcon toolkit

e Grid of evaluation nodes
grid = funnode(fspace)
e (Collocation matrix
Phi = funbas(fspace)
e Interpolation coefficients for function y = f(x) on fspace

a = funfitxy(fspace,x,y)

22

Collocation example

Uses Matlab files in “collocation example.zip” in LMS

$%%%% economic parameters

alpha = 1/3; capital's share 1n production function

beta = 0.95; %% time discount factor

delta = 0.05; %% depreciation rate

sigma = 1; %% CRRA (=1/1IES)

rho = (1l/beta)-1; %% implied rate of time preference
kstar = (alpha/ (rho+delta))”(1/(l-alpha)); %% steady state
kbar = (1/delta)”(1/(l-alpha));

23

Parameter structure

©00T00

parameters
parameters
parameters

.alpha =
.beta
.delta =
parameters.

sigma

put in a structure to pass to other functions

alpha;
beta;

delta;
sigma;

24

Breakpoints for splines

0. 0 0 O O

%$%%%% set up grid of capital stock

n = 99; number of breakpoints for k grid

kmin = tol; %% effectively zero

kmax = kbar; %% effective upper bound

curv = 0.5; %% (curv = 0 log—-spaced, curv = 1 linear)
breaks = nodeunif (n, kmin.”curv, kmax.”curv) .”(1l/curv);

Breakpoints not evenly spaced. Will be n + 2 collocation nodes

25

Function space for approximations

$%%%% setup state space using CompEcon tools

fspace = fundef({'spli', breaks}); %% function space structure

grid = funnode (fspace); $ nodes where we solve the problem

Phi = funbas (fspace); % matrix of collocation basis vectors
% Phi_{i13} = phi_Jj(k_1)

k = grid; % grid has n+2 elements

26

Initial guess at collocation coefficients

% 1nitial guess at collocation coefficients "a"

= alphaxbetaxk.”alpha; % guess for consumption policy
= log(c)/ (1-beta); % guess for value function

o\°

= Phi\v; implied collocation coefficients

27

Solve Bellman equation by collocation

—_ = = = =

solve Bellman equation

for i=l:max_iter;

$%%%% optimal consumption given coefficients "a"

c = solve_brent('rhs_bellman', k,parameters, a, fspace, cmin, cmax, to
$%5%%% maximlized rhs of Bellman equation

v = rhs_bellman (c, k, parameters, a, fspace); %% v (a)

Numerical routine solve_brent does the maximization

28

RHS of the Bellman equation

function y = rhs_bellman(c, s, parameters, a, fspace)

beta = parameters.beta;
sigma = parameters.sigma;

u = utility(c,sigma);
Ev = expected_value (c, s,parameters, a, fspace) ;
y = utbetaxEv;

29

Utility function

function u = utility(c, sigma)
1f sigma==1,
u = log(c);
else
u = (1/(l-sigma))*(c.”(l-sigma) - 1);
end

30

Evaluating v(K') = » _;a;¢;(k')

function v = value(c,k,parameters, a, fspace)

alpha = parameters.alpha;
delta = parameters.delta;

kprime = (k.”alpha) + (l-delta) xk-c;

v = funeval (a, fspace, kprime);

Basis function ¢,(-) evaluated at some k' not nodes k;

31

Updating coefficients

$%%%% updated collocation coefficients
if do_newton == 1,

%$%%%% 1mplied by optimal consumption
kprime = (k.”alpha) + (l-delta)*xk-c;
$%%%% Jacobian matrix of v (a)

Jacoblian = betaxfunbas (fspace, kprime);
$%%%% Newton's method

anew = a — (Phi-Jacobian)\ (Phixa-v) ;
else

anew = Phi\v;

end

32

Check if converged

%$%%%% check i1f converged
error = norm(anew—-a, inf);
fprintf ('%4i %6.2e \n', [i, error]);

1f error<tol, break, end;

$%%%% 1f not converged, update and try agailn
a = anew;
end

33

Interpolation on finer grid

c_coeff = funfitxy (fspace,s,c); %% for c (k)
g_coeff = funfitxy (fspace, s, kprime); 5%

$%%%% 1lnterpolate on finer grid

$%%%% finer grid
kfine = nodeunif (N, kmin.”curv, kmax.”curv).”(1l/curv);

$%5%%% 1lnterpolated value function
vfine = funeval (a, fspace, kfine);

$%%%% 1lnterpolation coefficients for c (k)
ac = funfitxy (fspace,k,c);

With solution in hand, can interpolate as needed

34

Next class

e Stochastic dynamic programming

35

