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This class

A more flexible approach to practical dynamic programming
Use techniques for function interpolation and approximation
In particular, a method known as collocation

Details implemented using CompEcon toolkit for Matlab



Main idea

e Bellman equation for the optimal growth model

v(k) = max |u(c) + Bu(f(k) —c))]

c>0

where k' = f(k) — ¢ denotes the capital stock chosen for next period

e Suppose we can write
n
(k) =) aje;(k)
j=1

using n known basis functions ¢;(k) with coefficients a;



Main idea

e Solve for n coeflicients a; by solving Bellman equation at n given
collocation nodes k; for 1 =1,...,n

e That is, find n coeflicients a; such that

> ajo(ki) = max [u(e)+8Y a;éy(f(k)—c) |, i=1,..n
j=1 j=1

c>0

e This is a system of n nonlinear equations in n unknowns



Notation

e Let ®;; denote the elements of the collocation matrix

(I)z'j — gbj(k@), i,j — 1, ceeg 1

To form this we need the n basis functions and n nodes

e LHS of Bellman equation is then
Pa

e RHS of Bellman equation is a vector-valued function v(a) with
typical element

v;(@) = max [u(c)—l—ﬁz a; i (fk)—¢) ], i=1,..n

c>0

Notice that in this formulation v;(-) is a known function



Collocation equation

e In short, want to find vector a that solves collocation equation
$ba = v(a)
e For example, can do function iteration on the coefficients by
atl = d tu(ad), [=0,1,2,...
starting from some a’ and iterating until

Hal—i—l

—ad| :m_ax[\a,lfl —a,li]] <e€
1
for some some pre-specified tolerance € > 0

e Can often improve on this using Newton’s method (or variants)



Aside on Newton’s method

e Suppose we want to find a root z such that f(x) = 0 for some f(-)
e Let ¥ be an initial guess and suppose f(z?) # 0

e Consider first-order approximation of f(z) around "
fl@) = f(2°) + f(a”)(z — 2°)
e Then find z' such that this linear approximation is zero
vt =a" — f'(a") 7" f(a")
And

o =gt — (DT F(2h), [=0,1,2,...



Aside on Newton’s method

Similar idea for vector-valued functions

fx) ~ f(a’) + f'(z”)(z — a°)

where f/(z') is the Jacobian of f(x) evaluated at = — i.e., the
matrix of partial derivatives of the form

0 fi(x")

9
8$j

1,7 =1,...,n

where f;(ax) denotes the typical element of the vector f(x)

Implies iterative scheme

et =gl — f(2H7 f(2h), [1=0,1,2,...



Applying Newton’s method to our problem

e For our problem we are trying to find a such that
fla)=®Pa—v(a)=0

e The Jacobian of f(a) is the matrix
f'(a) = ® - v'(a)

e Implies iterative scheme

atl=a'—[® -V (a)] ! ®d —v(ad))], [=0,1,2,...



Applying Newton’s method to our problem

The Jacobian of v(a) has elements

ov;(a)

o = POs(f (k) = clki; @)

This uses the Envelope theorem — i.e, we can ignore the indirect
eflects of a; that come through the optimal policy

c(ki; @) = argmax |u() + 8 a; 6;(/ (ki) — )

c>0
To implement this, we need to choose a basis-node scheme

Common choices include Chebychev polynomials and piecewise
polynomial splines
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Chebychev polynomials

e For some x € |a,b| the jth basis function is

r — a

b—a

oj(x) = Pj1(2),  z2=2 —1

where the polynomials on z € [—1 + 1] are given by
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Chebychev polynomials

Chebychev Polynomial Basis Functions
1F

1

-
o
-
o
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Linear splines

e For some z € |a, b] with n evenly-spaced breakpoints ;

(et

b;(x) = 4 L

L 0 otherwise

if’:l]—tj‘<h

where the breakpoints are
tj =a-+ (] — 1)h

and where h is the distance between any pair of breakpoints

b—1
h =
n—1
e In practice choose interpolation nodes z1,...,x, to coincide with
breakpoints t1, ..., %, so that ¢;(x;) =1 if i« = j and zero otherwise
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Linear splines

Linear Spline Basis Functions

1F - 1F
0 0
1 1
0 0
1 1
0 0
0 1
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Cubic splines

e Linear splines are a series of line segments spliced together to form
a continuous function

e (ubic splines are a series of cubic polynomials spliced together to
form a twice continuously differentiable function

e (Cubic splines a natural basis for approximating smooth functions
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Cubic splines
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Cubic Spline Basis Functions

DA
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Approximating f(x) =1

Function
-0.5 0 0.5
Cubic Spline
-0.5 0] 0.5

T+ 222 — 3x°

Chebychev

Linear Spline

17



Approximating f(x) = exp(—x)

Function Chebychev

Cubic Spline Linear Spline
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Approximating f(x) =1/(1

Function

251%)

Chebychev

Cubic Spline

Linear Spline
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CompEcon toolkit

http://wwwéd.ncsu.edu/ "pfackler/compecon/toolbox.html
Contains many computational tools, including for collocation

For example
fspace = fundef({'spli', breaks})

This creates a function structure using piecewise polynomial
splines for basis functions on the breakpoints in breaks

By default 'spli' uses cubic splines

Subtle differences in syntax, depending on basis family
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CompEcon toolkit

e Grid of evaluation nodes
grid = funnode(fspace)
e (Collocation matrix
Phi = funbas(fspace)
e Interpolation coefficients for function y = f(x) on fspace

a = funfitxy(fspace,x,y)
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Collocation example

Uses Matlab files in “collocation example.zip” in LMS

$%%%% economic parameters

alpha = 1/3; capital's share 1n production function

beta = 0.95; %% time discount factor

delta = 0.05; %% depreciation rate

sigma = 1; %% CRRA (=1/1IES)

rho = (1l/beta)-1; %% implied rate of time preference
kstar = (alpha/ (rho+delta))”(1/(l-alpha)); %% steady state
kbar = (1/delta)”(1/(l-alpha));
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Parameter structure

©00T00

parameters
parameters
parameters

.alpha =
.beta
.delta =
parameters.

sigma

put in a structure to pass to other functions

alpha;
beta;

delta;
sigma;
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Breakpoints for splines

0. 0 0 O O

%$%%%% set up grid of capital stock

n = 99; number of breakpoints for k grid

kmin = tol; %% effectively zero

kmax = kbar; %% effective upper bound

curv = 0.5; %% (curv = 0 log—-spaced, curv = 1 linear)
breaks = nodeunif (n, kmin.”curv, kmax.”curv) .”(1l/curv);

Breakpoints not evenly spaced. Will be n + 2 collocation nodes
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Function space for approximations

$%%%% setup state space using CompEcon tools

fspace = fundef({'spli', breaks}); %% function space structure

grid = funnode (fspace); $ nodes where we solve the problem

Phi = funbas (fspace); % matrix of collocation basis vectors
% Phi_{i13} = phi_Jj(k_1)

k = grid; % grid has n+2 elements
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Initial guess at collocation coefficients

% 1nitial guess at collocation coefficients "a"

= alphaxbetaxk.”alpha; % guess for consumption policy
= log(c)/ (1-beta); % guess for value function

o\°

= Phi\v; implied collocation coefficients
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Solve Bellman equation by collocation

—_ = = = =

solve Bellman equation

for i=l:max_iter;

$%%%% optimal consumption given coefficients "a"

c = solve_brent('rhs_bellman', k,parameters, a, fspace, cmin, cmax, to
$%5%%% maximlized rhs of Bellman equation

v = rhs_bellman (c, k, parameters, a, fspace); %% v (a)

Numerical routine solve_brent does the maximization
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RHS of the Bellman equation

function y = rhs_bellman(c, s, parameters, a, fspace)

beta = parameters.beta;
sigma = parameters.sigma;

u = utility(c,sigma);
Ev = expected_value (c, s,parameters, a, fspace) ;
y = utbetaxEv;
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Utility function

function u = utility(c, sigma)
1f sigma==1,
u = log(c);
else
u = (1/(l-sigma))*(c.”(l-sigma) - 1);
end
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Evaluating v(K') = » _;a;¢;(k')

function v = value(c,k,parameters, a, fspace)

alpha = parameters.alpha;
delta = parameters.delta;

kprime = (k.”alpha) + (l-delta) xk-c;

v = funeval (a, fspace, kprime);

Basis function ¢,(-) evaluated at some k' not nodes k;
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Updating coefficients

$%%%% updated collocation coefficients
if do_newton == 1,

%$%%%% 1mplied by optimal consumption
kprime = (k.”alpha) + (l-delta)*xk-c;
$%%%% Jacobian matrix of v (a)

Jacoblian = betaxfunbas (fspace, kprime);
$%%%% Newton's method

anew = a — (Phi-Jacobian)\ (Phixa-v) ;
else

anew = Phi\v;

end
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Check if converged

%$%%%% check i1f converged
error = norm(anew—-a, inf);
fprintf ('%4i %6.2e \n', [i, error]);

1f error<tol, break, end;

$%%%% 1f not converged, update and try agailn
a = anew;
end
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Interpolation on finer grid

c_coeff = funfitxy (fspace,s,c); %% for c (k)
g_coeff = funfitxy (fspace, s, kprime); 5%

$%%%% 1lnterpolate on finer grid

$%%%% finer grid
kfine = nodeunif (N, kmin.”curv, kmax.”curv).”(1l/curv);

$%5%%% 1lnterpolated value function
vfine = funeval (a, fspace, kfine);

$%%%% 1lnterpolation coefficients for c (k)
ac = funfitxy (fspace,k,c);

With solution in hand, can interpolate as needed
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Next class

e Stochastic dynamic programming
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