
Macroeconomics
Lecture 7: dynamic programming methods, part five

Chris Edmond

1st Semester 2019

1

This class

• A more flexible approach to practical dynamic programming

• Use techniques for function interpolation and approximation

• In particular, a method known as collocation

• Details implemented using CompEcon toolkit for Matlab

2

Main idea

• Bellman equation for the optimal growth model

v(k) = max
c�0

⇥
u(c) + �v(f(k)� c))

⇤

where k0 = f(k)� c denotes the capital stock chosen for next period

• Suppose we can write

v(k) ⇡
nX

j=1

aj�j(k)

using n known basis functions �j(k) with coefficients aj

3

Main idea

• Solve for n coefficients aj by solving Bellman equation at n given

collocation nodes ki for i = 1, ..., n

• That is, find n coefficients aj such that

nX

j=1

aj �j(ki) = max
c�0

h
u(c)+�

nX

j=1

aj �j(f(ki)�c))
i
, i = 1, ..., n

• This is a system of n nonlinear equations in n unknowns

4

Notation

• Let �ij denote the elements of the collocation matrix

�ij = �j(ki), i, j = 1, ..., n

To form this we need the n basis functions and n nodes

• LHS of Bellman equation is then

�a

• RHS of Bellman equation is a vector-valued function v(a) with

typical element

vi(a) = max
c�0

h
u(c) + �

nX

j=1

aj �j(f(ki)� c))
i
, i = 1, ..., n

Notice that in this formulation vi(·) is a known function

5

Collocation equation

• In short, want to find vector a that solves collocation equation

�a = v(a)

• For example, can do function iteration on the coefficients by

al+1 = ��1v(al), l = 0, 1, 2, . . .

starting from some a0
and iterating until

kal+1 � alk = max
i

⇥
| al+1

i � ali |
⇤
< "

for some some pre-specified tolerance " > 0

• Can often improve on this using Newton’s method (or variants)

6

Aside on Newton’s method

• Suppose we want to find a root x such that f(x) = 0 for some f(·)

• Let x0 be an initial guess and suppose f(x0) 6= 0

• Consider first-order approximation of f(x) around x0

f(x) ⇡ f(x0) + f 0(x0)(x� x0)

• Then find x1 such that this linear approximation is zero

x1 = x0 � f 0(x0)�1 f(x0)

And

xl+1 = xl � f 0(xl)�1 f(xl), l = 0, 1, 2, . . .

7

Aside on Newton’s method

• Similar idea for vector-valued functions

f(x) ⇡ f(x0) + f 0(x0)(x� x0)

where f 0(x0) is the Jacobian of f(x) evaluated at x0
— i.e., the

matrix of partial derivatives of the form

@fi(x0)

@xj
, i, j = 1, ..., n

where fi(x) denotes the typical element of the vector f(x)

• Implies iterative scheme

xl+1 = xl � f 0(xl)�1 f(xl), l = 0, 1, 2, . . .

8

Applying Newton’s method to our problem

• For our problem we are trying to find a such that

f(a) ⌘ �a� v(a) = 0

• The Jacobian of f(a) is the matrix

f 0(a) = �� v0(a)

• Implies iterative scheme

al+1 = al � [�� v0(al)]�1 [�al � v(al)], l = 0, 1, 2, . . .

9

Applying Newton’s method to our problem

• The Jacobian of v(a) has elements

@vi(a)

@aj
= � �j(f(ki)� c(ki ; a))

• This uses the Envelope theorem — i.e, we can ignore the indirect

effects of aj that come through the optimal policy

c(ki ; a) = argmax
c�0

h
u(c) + �

nX

j=1

aj �j(f(ki)� c))
i

• To implement this, we need to choose a basis-node scheme

• Common choices include Chebychev polynomials and piecewise

polynomial splines

10

Chebychev polynomials

• For some x 2 [a, b] the jth basis function is

�j(x) = Pj�1(z), z = 2
x� a

b� a
� 1

where the polynomials on z 2 [�1 + 1] are given by

P0(z) = 1

P1(z) = z

P2(z) = 2z2 � 1

.

.

.

Pj(z) = 2zPj�1(z)� Pj�2(z), j = 2, 3, . . .

11

Chebychev polynomials

-1

1

-1

1
Chebychev Polynomial Basis Functions

-1

1

-1

1

-1

1

-1

1

0 1
-1

1

0 1
-1

1

0 1
-1

1

12

Linear splines

• For some x 2 [a, b] with n evenly-spaced breakpoints tj

�j(x) =

8
><

>:

1� |x� tj |
h

if |x� tj | < h

0 otherwise

where the breakpoints are

tj = a+ (j � 1)h

and where h is the distance between any pair of breakpoints

h =
b� 1

n� 1

• In practice choose interpolation nodes x1, . . . , xn to coincide with

breakpoints t1, . . . , tn so that �j(xi) = 1 if i = j and zero otherwise

13

Linear splines

0

1

0

1
Linear Spline Basis Functions

0

1

0

1

0

1

0

1

0 1
0

1

0 1
0

1

0 1
0

1

14

Cubic splines

• Linear splines are a series of line segments spliced together to form

a continuous function

• Cubic splines are a series of cubic polynomials spliced together to

form a twice continuously differentiable function

• Cubic splines a natural basis for approximating smooth functions

15

Cubic splines

0

1

0

1
Cubic Spline Basis Functions

0

1

0

1

0

1

0

1

0 1
0

1

0 1
0

1

0 1
0

1

16

Approximating f(x) = 1 + x+ 2x2 � 3x3

-1 -0.5 0 0.5 1
0

1

2

3

4

5
Function

-1 -0.5 0 0.5 1
0

1

2

3

4

5
Chebychev

-1 -0.5 0 0.5 1
0

1

2

3

4

5
Cubic Spline

-1 -0.5 0 0.5 1
0

1

2

3

4

5
Linear Spline

17

Approximating f(x) = exp(�x)

-1 -0.5 0 0.5 1
0

0.5

1

1.5

2

2.5

3
Function

-1 -0.5 0 0.5 1
0

0.5

1

1.5

2

2.5

3
Chebychev

-1 -0.5 0 0.5 1
0

0.5

1

1.5

2

2.5

3
Cubic Spline

-1 -0.5 0 0.5 1
0

0.5

1

1.5

2

2.5

3
Linear Spline

18

Approximating f(x) = 1/(1 + 25x2)

-1 -0.5 0 0.5 1
-0.2

0

0.2

0.4

0.6

0.8

1

1.2
Function

-1 -0.5 0 0.5 1
-0.2

0

0.2

0.4

0.6

0.8

1

1.2
Chebychev

-1 -0.5 0 0.5 1
-0.2

0

0.2

0.4

0.6

0.8

1

1.2
Cubic Spline

-1 -0.5 0 0.5 1
-0.2

0

0.2

0.4

0.6

0.8

1

1.2
Linear Spline

19

Approximating f(x) =
p
|x|

-1 -0.5 0 0.5 1
0

0.2

0.4

0.6

0.8

1
Function

-1 -0.5 0 0.5 1
0

0.2

0.4

0.6

0.8

1
Chebychev

-1 -0.5 0 0.5 1
0

0.2

0.4

0.6

0.8

1
Cubic Spline

-1 -0.5 0 0.5 1
0

0.2

0.4

0.6

0.8

1
Linear Spline

20

CompEcon toolkit

http://www4.ncsu.edu/~pfackler/compecon/toolbox.html

• Contains many computational tools, including for collocation

• For example

fspace = fundef({'spli', breaks})

• This creates a function structure using piecewise polynomial

splines for basis functions on the breakpoints in breaks

• By default 'spli' uses cubic splines

• Subtle differences in syntax, depending on basis family

21

CompEcon toolkit

• Grid of evaluation nodes

grid = funnode(fspace)

• Collocation matrix

Phi = funbas(fspace)

• Interpolation coefficients for function y = f(x) on fspace

a = funfitxy(fspace,x,y)

22

Collocation example

Uses Matlab files in “collocation_example.zip ” in LMS

%%%%% economic parameters

alpha = 1/3; %% capital's share in production function
beta = 0.95; %% time discount factor
delta = 0.05; %% depreciation rate
sigma = 1; %% CRRA (=1/IES)
rho = (1/beta)-1; %% implied rate of time preference

kstar = (alpha/(rho+delta))^(1/(1-alpha)); %% steady state
kbar = (1/delta)^(1/(1-alpha));

23

Parameter structure

%%%%% put in a structure to pass to other functions

parameters.alpha = alpha;
parameters.beta = beta;
parameters.delta = delta;
parameters.sigma = sigma;

24

Breakpoints for splines

%%%%% set up grid of capital stock

n = 99; %% number of breakpoints for k grid
kmin = tol; %% effectively zero
kmax = kbar; %% effective upper bound

curv = 0.5; %% (curv = 0 log-spaced, curv = 1 linear)
breaks = nodeunif(n, kmin.^curv, kmax.^curv).^(1/curv);

Breakpoints not evenly spaced. Will be n+ 2 collocation nodes

25

Function space for approximations

%%%%% setup state space using CompEcon tools

fspace = fundef({'spli', breaks}); %% function space structure

grid = funnode(fspace); % nodes where we solve the problem
Phi = funbas(fspace); % matrix of collocation basis vectors

% Phi_{ij} = phi_j(k_i)

k = grid; % grid has n+2 elements

26

Initial guess at collocation coefficients

%%%%% initial guess at collocation coefficients "a"

c = alpha*beta*k.^alpha; % guess for consumption policy
v = log(c)/(1-beta); % guess for value function

a = Phi\v; % implied collocation coefficients

27

Solve Bellman equation by collocation

%%%%% solve Bellman equation

for i=1:max_iter;

%%%%% optimal consumption given coefficients "a"

c = solve_brent('rhs_bellman',k,parameters,a,fspace,cmin,cmax,tol);

%%%%% maximized rhs of Bellman equation

v = rhs_bellman(c,k,parameters,a,fspace); %% v(a)

Numerical routine solve_brent does the maximization

28

RHS of the Bellman equation

function y = rhs_bellman(c,s,parameters,a,fspace)

beta = parameters.beta;
sigma = parameters.sigma;

u = utility(c,sigma);

Ev = expected_value(c,s,parameters,a,fspace);

y = u+beta*Ev;

29

Utility function

function u = utility(c,sigma)

if sigma==1,

u = log(c);

else

u = (1/(1-sigma))*(c.^(1-sigma) - 1);

end

30

Evaluating v(k0) =
P

j aj�j(k0)

function v = value(c,k,parameters,a,fspace)

alpha = parameters.alpha;
delta = parameters.delta;

kprime = (k.^alpha) + (1-delta)*k-c;

v = funeval(a,fspace,kprime);

Basis function �j(·) evaluated at some k0 not nodes ki

31

Updating coefficients

%%%%% updated collocation coefficients

if do_newton == 1,

%%%%% implied by optimal consumption
kprime = (k.^alpha) + (1-delta)*k-c;

%%%%% Jacobian matrix of v(a)
Jacobian = beta*funbas(fspace,kprime);

%%%%% Newton's method
anew = a - (Phi-Jacobian)\(Phi*a-v);

else

anew = Phi\v;

end

32

Check if converged

%%%%% check if converged

error = norm(anew-a,inf);

fprintf('%4i %6.2e \n',[i, error]);

if error<tol, break, end;

%%%%% if not converged, update and try again

a = anew;

end

33

Interpolation on finer grid

c_coeff = funfitxy(fspace,s,c); %% for c(k)
g_coeff = funfitxy(fspace,s,kprime); %% for g(k)=k'

%%%%% interpolate on finer grid

%%%%% finer grid
kfine = nodeunif(N, kmin.^curv, kmax.^curv).^(1/curv);

%%%%% interpolated value function
vfine = funeval(a,fspace,kfine);

%%%%% interpolation coefficients for c(k)
ac = funfitxy(fspace,k,c);

With solution in hand, can interpolate as needed

34

Next class

• Stochastic dynamic programming

35

