Macroeconomaics

Lecture 6: dynamic programming methods, part four

Chris Edmond

1st Semester 2019

This class

Practical dynamic programming
Crude first approach — discrete state approximation
A simple value function iteration scheme implemented in MATLAB

Later we’ll refine this approach

Practical dynamic programming

e Suppose we want to solve the Bellman equation for the optimal
growth model

v(k) = mréllgé) Lu(f(k) —z) + Bu(z) | for all k € K

where x denotes the capital stock chosen for next period

e For this problem the givens are

— state space KC

— strictly increasing strictly concave production function f(k)
— strictly increasing strictly concave utility function u(c)

— constraint sets of the form I'(k) = [0, f(k)] for each k € IC
— time discount factor 0 < 5 < 1

Discrete state space approximation

e Now suppose we approximate the continuous state space IC with a
suitably chosen finite grid of possible capital stocks

kmin < ... < k; < ... < kmax, 1 =1,...,n

That is, a vector of length n

e On this grid of points, the value function is also a finite vector

V(kmin) , -+ 5 (ki) - o, V(Kkmax) i=1,...,n

e Write k; for a typical element of the grid of capital stocks and
v; = v(k;) for a typical element of the value function

Discrete state space approximation

e Let ¢;; denote consumption if current capital is k = k; and capital
chosen for next period is x = k;

cij = f(ki) — kj, ,j=1,...,n
We will need to be careful to respect the feasibility constraints
0<k; <f(ki), 1,5 =1,...,n
e Let u;; denote the flow utility associated with c¢;;
wij = u(cij), i,7=1,...n

® So u is an n X n matrix with rows indicating current capital k = k;
and columns indicating feasible choices for x = k;

Discrete state space approximation

e In this notation, our Bellman equation can be written

V; = Imnax [uij—l—ﬁvj], 1=1,....mn
J

e Associated to this is the policy function

gi = argmax [uij—kﬁvj}, 1 =1,...,n
J

such that g; = g(k;) attains the max given k = k;

Value function iteration

e Start with an initial guess v,? and then calculate

vngv?:m?X[uij%—Bv?], 1 =1,...,n

and compute the error
|Tv° —0°|| = max [| Tv] — v} |]
1

1

e If this error is less than some pre-specified tolerance € > 0, stop.
Otherwise update to

vz-zvail:m]aX[uijJrﬁv}-], 1=1,...,n

Value function iteration

e Keep iterating on

7 T

it = Tl max [uij —I—BUH, 1=1,....n
j

for iterates [= 0,1,2,... until

|Tv" — | = max [| T —vi|] <e
(2

e Since 7' is a contraction mapping, this will converge

Implementing value function iteration in MATLAB

Setup

From Matlab script “value function iteration example.m” in LMS

$%%%% economic parameters

alpha = 1/3; %% capilital's share 1n production function
beta = 0.95; %% time discount factor

delta = 0.05; %% depreciation rate

sigma = 1; %% CRRA (=1/1IES)

rho = (1l/beta)-1; %% implied rate of time preference

kstar = (alpha/ (rho+delta))”(1/(l-alpha)); %% steady state
kbar = (1/delta)”(1/(l-alpha));

10

Setup

$%%%% numerical parameters

max_iter = 500; %% maximum number of iterations

tol le-7; %% treat numbers smaller than this as zero
penalty 10716; %% for penalizing constraint violations

11

Setup

$%%%% setting up the grid of capital stocks

n = 1001, %% number of nodes for k grid

kmin = tol; %% effectively zero

kmax = kbar; %% effective upper bound on k grid
k = linspace (kmin, kmax, n); %% linearly spaced

May need to choose grid ‘artfully’ ...

12

Return function

$%%%% return function
C = zeros(n,n);
for j=1:n,
c(:,3) = (k.”alpha) + (l-delta)*xk — k(3);

end

But this leads to infeasible choices ...

13

Return function: enforcing feasibility

$%%%% penallize violations of feasibility constraints
violations = (c<=0);
c = c.*x(c>=0) + eps;
1f sigma==1,

u = log(c) — penaltyxviolations;
else

u = (1/(l-sigma))*(c.”(l-sigma) - 1) - penaltys*violations;
end

This will ensure that the solution respects feasibility constraints

14

Bellman iterations

$%%%% now solve Bellman equation by value function iteration
$%%%% 1nitial guess

v = zeros(n,1l);

$%%%% iterate on Bellman operator

for i=l:max_iter,

For loop needs an ‘end’ — see below

15

Maximization step

$%%%% RHS of Bellman equation

RHS = u + betaxkron(ones(n,1l),v');
$%%%% maximize over this to get Tv
[Tv,argmax] = max (RHS, [],2);

$%%%% policy that attains the maximum
g = k(argmax) ;

RHS is an n X n matrix with rows indicating current k£ = k; and
columns indicating feasible next period’s capital x = k;

For each row entry ¢, max is taken along the column entries 7 of RHS

16

Check if converged

%$%%%% check 1f converged
error = norm(Tv-v, inf);
fprintf ('%$41i %$6.2e \n', [1, error]);

1f error<tol, break, end;

Breaks the for loop if we have error < tolerance

17

If not, update and try again

$%%%% 1f not converged, update and try again

Here’s that end to the for loop, so now we go back to the beginning of
the loop but with a new guess at v

18

Convergence of value functions v' — v = Tw

OfF=======- e P e IT=-=-=-=-=-=-=-- Fm--===--

K iterating on v'*t! = T from v° =0
4 .

S
>
g -
© .
= fixed point v = Tv
=
(S
=
= -8 .
g
—10 -
—12 |- -]
| | | | |
0 0.05 0.1 0.15 0.2 0.25 0.3

capital stock, k

19

policy function, g(k)

Convergence of policy functions gl — ¢

0.3

0.25

0.2

0.15

0.05

.

1
0.15
capital stock, k

20

capital stock, k;

12

10

Transitional dynamics

kir1 = g(k¢) from various kg

10 15 20 25 30 35

time, t

21

40

45

50

Next class

e Refining this approach

e Interpolation and function approximation by collocation

22

