
Macroeconomics
Lecture 6: dynamic programming methods, part four

Chris Edmond

1st Semester 2019

1

This class

• Practical dynamic programming

• Crude first approach — discrete state approximation

• A simple value function iteration scheme implemented in Matlab

• Later we’ll refine this approach

2

Practical dynamic programming

• Suppose we want to solve the Bellman equation for the optimal
growth model

v(k) = max
x2�(k)

⇥
u(f(k)� x) + �v(x)

⇤
for all k 2 K

where x denotes the capital stock chosen for next period

• For this problem the givens are

– state space K
– strictly increasing strictly concave production function f(k)
– strictly increasing strictly concave utility function u(c)
– constraint sets of the form �(k) = [0, f(k)] for each k 2 K
– time discount factor 0 < � < 1

3

Discrete state space approximation

• Now suppose we approximate the continuous state space K with a
suitably chosen finite grid of possible capital stocks

kmin < . . . < ki < . . . < kmax , i = 1, ..., n

That is, a vector of length n

• On this grid of points, the value function is also a finite vector

v(kmin) , . . . , v(ki) , . . . , v(kmax) , i = 1, ..., n

• Write ki for a typical element of the grid of capital stocks and
vi = v(ki) for a typical element of the value function

4

Discrete state space approximation

• Let cij denote consumption if current capital is k = ki and capital
chosen for next period is x = kj

cij = f(ki)� kj , i, j = 1, ..., n

We will need to be careful to respect the feasibility constraints

0 kj f(ki), i, j = 1, ..., n

• Let uij denote the flow utility associated with cij

uij = u(cij), i, j = 1, ..., n

• So u is an n⇥ n matrix with rows indicating current capital k = ki
and columns indicating feasible choices for x = kj

5

Discrete state space approximation

• In this notation, our Bellman equation can be written

vi = max
j

⇥
uij + �vj

⇤
, i = 1, ..., n

• Associated to this is the policy function

gi = argmax
j

⇥
uij + �vj

⇤
, i = 1, ..., n

such that gi = g(ki) attains the max given k = ki

6

Value function iteration

• Start with an initial guess v0i and then calculate

v1i = Tv0i = max
j

⇥
uij + �v0j

⇤
, i = 1, ..., n

and compute the error

kTv0 � v0k = max
i

⇥
|Tv0i � v0i |

⇤

• If this error is less than some pre-specified tolerance " > 0, stop.
Otherwise update to

v2i = Tv1i = max
j

⇥
uij + �v1j

⇤
, i = 1, ..., n

7

Value function iteration

• Keep iterating on

vl+1
i = Tvli = max

j

⇥
uij + �vlj

⇤
, i = 1, ..., n

for iterates l = 0, 1, 2, . . . until

kTvl � vlk = max
i

⇥
|Tvli � vli |

⇤
< "

• Since T is a contraction mapping, this will converge

8

Implementing value function iteration in Matlab

9

Setup

From Matlab script “value_function_iteration_example.m ” in LMS

%%%%% economic parameters

alpha = 1/3; %% capital's share in production function

beta = 0.95; %% time discount factor

delta = 0.05; %% depreciation rate

sigma = 1; %% CRRA (=1/IES)

rho = (1/beta)-1; %% implied rate of time preference

kstar = (alpha/(rho+delta))^(1/(1-alpha)); %% steady state

kbar = (1/delta)^(1/(1-alpha));

10

Setup

%%%%% numerical parameters

max_iter = 500; %% maximum number of iterations

tol = 1e-7; %% treat numbers smaller than this as zero

penalty = 10^16; %% for penalizing constraint violations

11

Setup

%%%%% setting up the grid of capital stocks

n = 1001; %% number of nodes for k grid

kmin = tol; %% effectively zero

kmax = kbar; %% effective upper bound on k grid

k = linspace(kmin, kmax, n); %% linearly spaced

May need to choose grid ‘artfully’ . . .

12

Return function

%%%%% return function

c = zeros(n,n);

for j=1:n,

c(:,j) = (k.^alpha) + (1-delta)*k - k(j);

end

But this leads to infeasible choices . . .

13

Return function: enforcing feasibility

%%%%% penalize violations of feasibility constraints

violations = (c<=0);

c = c.*(c>=0) + eps;

if sigma==1,

u = log(c) - penalty*violations;

else

u = (1/(1-sigma))*(c.^(1-sigma) - 1) - penalty*violations;

end

This will ensure that the solution respects feasibility constraints

14

Bellman iterations

%%%%% now solve Bellman equation by value function iteration

%%%%% initial guess

v = zeros(n,1);

%%%%% iterate on Bellman operator

for i=1:max_iter,

For loop needs an ‘end’ — see below

15

Maximization step

%%%%% RHS of Bellman equation

RHS = u + beta*kron(ones(n,1),v');

%%%%% maximize over this to get Tv

[Tv,argmax] = max(RHS,[],2);

%%%%% policy that attains the maximum

g = k(argmax);

RHS is an n⇥ n matrix with rows indicating current k = ki and
columns indicating feasible next period’s capital x = kj

For each row entry i, max is taken along the column entries j of RHS

16

Check if converged

%%%%% check if converged

error = norm(Tv-v,inf);

fprintf('%4i %6.2e \n',[i, error]);

if error<tol, break, end;

Breaks the for loop if we have error < tolerance

17

If not, update and try again

%%%%% if not converged, update and try again

v = Tv;

end

Here’s that end to the for loop, so now we go back to the beginning of
the loop but with a new guess at v

18

Convergence of value functions vl ! v = Tv

0 0.05 0.1 0.15 0.2 0.25 0.3

�12

�10

�8

�6

�4

�2

0

iterating on vl+1 = Tvl from v0 = 0

fixed point v = Tv

capital stock, k

va
lu
e
fu
nc

ti
on

,
v(
k)

19

Convergence of policy functions gl ! g

0 0.05 0.1 0.15 0.2 0.25 0.3

0

0.05

0.1

0.15

0.2

0.25

0.3

implied sequence of policy functions

capital stock, k

p
ol
ic
y
fu
nc

ti
on

,
g(
k)

20

Transitional dynamics

0 5 10 15 20 25 30 35 40 45 50
0

2

4

6

8

10

12

kt+1 = g(kt) from various k0

time, t

ca
pi
ta
l
st
oc
k,

k t

21

Next class

• Refining this approach

• Interpolation and function approximation by collocation

22

