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This class

• Principle of optimality

– is solving the Bellman equation the same as solving the original

sequence problem?

• Properties of the value function [skim this, for reference]

– using the maximum theorem and the contraction mapping theorem

to deduce properties of the value function

– what conditions are needed for value function to be increasing?

concave? differentiable?
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Sequence vs. recursive formulations
• General form of the sequence problem is to find

sup
{xt+1}1t=0

1X

t=0

�tF (xt, xt+1) (S)

subject to a sequence of constraint sets

xt+1 2 �(xt), t = 0, 1, 2, . . .

and given initial condition

x0 2 X

• Corresponding to this is the recursive problem

v(x) = sup
y2�(x)

⇥
F (x, y) + �v(y)

⇤
for all x 2 X (R)
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Principle of optimality

• Do the solutions to these problems coincide?

• General idea is that

(i) solution v to (R) evaluated at x = x0 gives the sup in (S), and

(ii) a sequence {xt+1}1t=0 attains the sup in (S) if and only if

v(xt) = F (xt, xt+1) + �v(xt+1), t = 0, 1, 2, . . .

• Bellman called this general idea the Principle of Optimality

• What assumptions on the primitives deliver this result?
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Four primitives

• State space X ✓ Rn

• Correspondence (set-valued function) � : X ◆ X describing

feasible choices as function of current state x 2 X

The graph of this correspondence is

A ⌘ graph(�) = { (x, y) 2 X ⇥X : y 2 �(x) }

• Return function F : A ! R giving flow payoff

• Discount factor � � 0

5



Feasible plans

• Let ⇡(x0) denote set of feasible plans {xt+1}1t=0 starting from x0

⇡(x0) =
n
{xt+1}1t=0 : xt+1 2 �(xt), t = 0, 1, 2, . . .

o

• Let x 2 ⇡(x0) denote a typical feasible plan
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Ensuring sequence problem is well-defined

• Assumption 1. Constraint set �(x) nonempty for all x 2 X

• Assumption 2. The objective limn!1
Pn

t=0 �
tF (xt, xt+1) exists

for all x0 2 X and all x 2 ⇡(x0)

Remark. A sufficient condition for Assumption 2 is that F (x, y)
is bounded and 0 < � < 1. But weaker conditions often work too
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Ensuring sequence problem is well-defined

• Now define partial sums of the form

un(x) ⌘
nX

t=0

�tF (xt, xt+1), x 2 ⇡(x0)

By Assumption 2, we can also define the limit

u(x) ⌘ lim
n!1

un(x)

• This allows us to define a supremum function v⇤ by

v⇤(x0) ⌘ sup
x2⇡(x0)

u(x) (S)

8



(S) ) (R)

• Under Assumptions 1 and 2, the v⇤ that solves (S) also solves (R)

• What about the converse?

• Suppose v solves (R), does v also solve (S)? That is, does v = v⇤?
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Partial converse

• In general no

• But suppose v solves (R) and satisfies boundedness condition

lim
n!1

�nv(xn) = 0, for all x 2 ⇡(x0) and x0 2 X (B)

Then v = v⇤

• In other words, v⇤ solves (R) but (R) may have other solutions

• If (R) has other solutions, they violate boundedness condition (B)
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Maximum theorem
Let X ✓ Rn

and Y ✓ Rm
and let the function f : X ⇥ Y ! R be

continuous and let the correspondence � : X ◆ Y be compact-valued

and continuous. Then (i) the function

h(x) ⌘ max
y2�(x)

f(x, y)

is continuous and (ii) the solution correspondence G : X ◆ Y given by

G(x) ⌘ argmax
y2�(x)

f(x, y) = { y 2 �(x) : f(x, y) = h(x) }

is nonempty, compact-valued and upper hemicontinuous (see appendix)

Remark. If f(x, y) is strictly concave in y and �(x) is convex, the

solution correspondence is single-valued and we write it g(x). Since

g(x) is single valued and upper hemicontinuous, it is continuous
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Bounded returns

• Let’s now focus on the functional equation

v(x) = max
y2�(x)

⇥
F (x, y) + �v(y)], for all x 2 X

with some additional structure

• Assumption 3. X ✓ Rn
is convex and the correspondence

� : X ◆ X is nonempty, compact-valued and continuous

• Assumption 4. F : A ! R is bounded, continuous and 0 < � < 1

12



Bounded returns

• Recall C(X) is set of bounded continuous functions f : X ! R

We can now conclude that the operator

Tf(x) = max
y2�(x)

⇥
F (x, y) + �f(y)], for all x 2 X

maps C(X) to C(X). That is, if f 2 C(X) then Tf 2 C(X) too

• This is because, under Assumptions 3 and 4:

– the RHS maximizes a continuous function over a compact-valued,

continuous correspondence, hence (i) the maximum is attained, and

(ii), by the maximum theorem, Tf is continuous

– both F and f are bounded, so Tf is bounded
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Bounded returns

• So T maps C(X) to C(X)

• Moreover T satisfies Blackwell’s conditions, so T is a contraction

• Since C(X) is a complete metric space and T is a contraction,

there is a unique fixed point v = Tv 2 C(X) that solves (R)

• Since Assumptions 1, 2 and the boundedness condition (B) are

satisfied, this v also solves (S)

• What else can we say about v?
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A useful result

• Let (S, d) be a complete metric space and let T : S ! S be a

contraction mapping with fixed point v 2 S. Then

(i) if S0
is a closed subset of S and T (S0) ✓ S0

then v 2 S0
, and

(ii) if T (S0) ✓ S00 ✓ S, then v 2 S00
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Examples

• Let

– S denote the set of continuous functions

– S0
denote the set of nondecreasing functions, and

– S00
denote the set of strictly increasing functions

• Then

– if T maps f 2 S to Tf 2 S0
then v 2 S0

so v nondecreasing

– if T maps f 2 S0
to Tf 2 S00

then v 2 S00
so v strictly increasing
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General idea

• Suppose f has some property P and T preserves this property.

Then Tf also has P

• Then by induction Tnf also has has P for any finite n = 0, 1, . . .

• Then if P is a property that is preserved by uniform convergence,

the fixed point v = Tv also has P
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Monotonicity

• Suppose we also have the following monotonicity assumptions

• Assumption 5. F (x, y) strictly increasing in x for each y

• Assumption 6. �(x) increasing in that if x  x0 then �(x) ✓ �(x0)
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Value function v is strictly increasing

• Suppose the primitives X,�, F,� satisfy Assumptions 3, 4, 5 and 6

and suppose v is the unique solution to

v(x) = max
y2�(x)

⇥
F (x, y) + �v(y)], for all x 2 X

• Then the value function v is strictly increasing
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Proof (sketch)

• Let f 2 C(X) and let x < x0. Then we have

Tf(x) = max
y2�(x)

⇥
F (x, y) + �f(y)

⇤

 max
y2�(x0)

⇥
F (x, y) + �f(y)

⇤

< max
y2�(x0)

⇥
F (x0, y) + �f(y)

⇤
= Tf(x0)

• Hence T maps bounded continuous functions f into bounded

continuous and strictly increasing functions Tf
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Proof (sketch)

• Now let C 0(X) denote the set of bounded continuous

nondecreasing functions on X and let C 00(X) ⇢ C 0(X) denote the

set of bounded continuous strictly increasing functions

• Then since T maps f 2 C 0(X) to Tf 2 C 00(X) the fixed point

v = Tv 2 C 00(X) too. Hence v is strictly increasing
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Curvature
• Assumption 7. F is strictly concave, that is, for any ✓ 2 (0, 1)

F ( ✓(x, y) + (1� ✓)(x0, y0) ) > ✓F (x, y) + (1� ✓)F (x0, y0)

for any (x, y) and (x0, y0) in the graph of �

• Assumption 8. � is convex in the sense that for any ✓ 2 (0, 1)

y 2 �(x) and y0 2 �(x0)

implies

✓y + (1� ✓)y0 2 �( ✓x+ (1� ✓)x0 )

for any x, x0 2 X

(since X is convex, equivalent to assuming graph of � is convex)
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Value function v is strictly concave

• Suppose the primitives X,�, F,� satisfy Assumptions 3, 4 and 7, 8

and suppose v is the unique solution to

v(x) = max
y2�(x)

⇥
F (x, y) + �v(y)], for all x 2 X

• Then v is strictly concave

• Moreover there is a continuous single-valued policy function

y = g(x) that attains the maximum
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Proof (sketch)

• Let x 6= x0 and let x✓ = ✓x+ (1� ✓)x0 for ✓ 2 (0, 1)

• Let y 2 �(x) be such that Tf(x) = F (x, y) + �f(x) and likewise

Let y0 2 �(x0) be such that Tf(x0) = F (x0, y0) + �f(x0)

• Then

Tf(x✓) � F (x✓, y✓) + �f(y✓)

> ✓
⇥
F (x, y) + �f(y)

⇤
+ (1� ✓)

⇥
F (x0, y0) + �f(y0)

⇤

= ✓Tf(x) + (1� ✓)Tf(x0)

Hence Tf is strictly concave
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Proof (sketch)

• Now let C 0(X) denote the set of bounded continuous concave

functions on X and let C 00(X) ⇢ C 0(X) denote the set of bounded

continuous strictly concave functions

• Then since T maps f 2 C 0(X) to Tf 2 C 00(X) the fixed point

v = Tv 2 C 00(X) too. Hence v is strictly concave

• Then since the RHS of Tv is strictly concave in y and the

constraint set �(x) is convex, by the maximum theorem there is a

unique y = g(x) that attains the maximum
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Benveniste-Scheinkman theorem

• Let X ✓ Rn
be convex and let v : X ! R be continuous and

concave. Fix x0 2 D ✓ X. If there exists a concave differentiable

function w : D ! R such that

w(x0) = v(x0)

and

w(x)  v(x) for all x 2 D

• Then v is differentiable at x0 and

@v(x0)

@xi
=

@w(x0)

@xi
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Proof (sketch)

• A supergradient of a concave function v at x0 is a vector p such that

p · (x� x0) � v(x)� v(x0) for all x 2 X

Generalizes the notion of a gradient to nondifferentiable functions.

For continuous functions there is always at least one supergradient.

For a differentiable function, the supergradient is unique

• But then

p · (x� x0) � v(x)� v(x0) � w(x)� w(x0) for all x 2 D

Since p is a supergradient of w and w is differentiable, p is unique.

Since p is unique, v is differentiable at x0
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Value function v is differentiable

• Assumption 9. F is continuously differentiable on its interior

• Now suppose the primitives X,�, F,� satisfy Assumptions 3, 4 and

7, 8, 9 and suppose v is the unique solution to

v(x) = max
y2�(x)

⇥
F (x, y) + �v(y)], for all x 2 X

and that y = g(x) is the policy function that attains the maximum

• Then v is continuously differentiable on its interior with

@v(x)

@xi
=

@F (x, y)

@xi

����
y=g(x)

(cf., the envelope condition)
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Proof (sketch)

• Fix some x0 and define

w(x) ⌘ F (x, g(x0)) + �v(x0)

• Since F is concave and differentiable, so is w. Moreover note that

w(x)  max
y2�(x)

⇥
F (x, y) + �v(y)] = v(x)

with equality at x = x0

• Hence Benveniste-Scheinkman conditions satisfied and v is

differentiable at x0
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Next class

• Practical dynamic programming

• Solving dynamic programming problems like this on a computer
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Appendix: continuity for correspondences

Consider a correspondence � : X ◆ Y

Because of the ambiguity of defining the inverse of a correspondence,

there are two notions of continuity

A correspondence � is lower hemicontinuous (lhc) at x 2 X if (i) �(x)
is nonempty and (ii) for every y 2 �(x) and sequence xn ! x, there

exists N � 1 and sequence yn ! y such that yn 2 �(xn) for all n � N

Roughly speaking, � is lhc if it avoids ‘exploding in the limit’ at x and

is not lhc if it ‘jumps up’ at x
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Appendix: continuity for correspondences

A compact-valued correspondence � is upper hemicontinuous (uhc) at

x 2 X if (i) �(x) is nonempty and (ii) for every sequence xn ! x and

every yn such that yn 2 �(xn), there exists a convergent subsequence of

yn with limit y 2 �(x)

Roughly speaking, � is uhc if it avoids ‘imploding in the limit’ at x and

is not uhc if it ‘jumps down’ at x

� is continuous at x 2 X if it is both lhc and uhc at x

If � is single-valued and uhc it is continuous in the usual sense
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