Macroeconomics

Lecture 5: dynamic programming methods, part three

Chris Edmond

1st Semester 2019

This class

- Principle of optimality
 - is solving the Bellman equation the same as solving the original sequence problem?
- Properties of the value function [skim this, for reference]
 - using the maximum theorem and the contraction mapping theorem to deduce properties of the value function
 - what conditions are needed for value function to be increasing? concave? differentiable?

Sequence vs. recursive formulations

(S)

• General form of the *sequence problem* is to find

$$\sup_{\{x_{t+1}\}_{t=0}^{\infty}} \sum_{t=0}^{\infty} \beta^t F(x_t, x_{t+1})$$

subject to a sequence of *constraint sets*

$$x_{t+1} \in \Gamma(x_t), \qquad t = 0, 1, 2, \dots$$

and given initial condition

$$x_0 \in X$$

• Corresponding to this is the *recursive problem*

$$v(x) = \sup_{y \in \Gamma(x)} \left[F(x, y) + \beta v(y) \right] \quad \text{for all } x \in X$$
 (R)

Principle of optimality

- Do the solutions to these problems coincide?
- General idea is that

(i) solution v to (R) evaluated at $x = x_0$ gives the sup in (S), and (ii) a sequence $\{x_{t+1}\}_{t=0}^{\infty}$ attains the sup in (S) if and only if $v(x_t) = F(x_t, x_{t+1}) + \beta v(x_{t+1}), \quad t = 0, 1, 2, ...$

- Bellman called this general idea the *Principle of Optimality*
- What assumptions on the primitives deliver this result?

Four primitives

- State space $X \subseteq \mathbb{R}^n$
- Correspondence (set-valued function) $\Gamma: X \rightrightarrows X$ describing feasible choices as function of current state $x \in X$

The graph of this correspondence is

$$A \equiv \operatorname{graph}(\Gamma) = \{ (x, y) \in X \times X : y \in \Gamma(x) \}$$

- Return function $F: A \to \mathbb{R}$ giving flow payoff
- Discount factor $\beta \ge 0$

Feasible plans

• Let $\pi(x_0)$ denote set of *feasible plans* $\{x_{t+1}\}_{t=0}^{\infty}$ starting from x_0

$$\pi(x_0) = \left\{ \{x_{t+1}\}_{t=0}^{\infty} : x_{t+1} \in \Gamma(x_t), \quad t = 0, 1, 2, \dots \right\}$$

• Let $\boldsymbol{x} \in \pi(x_0)$ denote a typical feasible plan

Ensuring sequence problem is well-defined

- ASSUMPTION 1. Constraint set $\Gamma(x)$ nonempty for all $x \in X$
- ASSUMPTION 2. The objective $\lim_{n\to\infty} \sum_{t=0}^n \beta^t F(x_t, x_{t+1})$ exists for all $x_0 \in X$ and all $x \in \pi(x_0)$

REMARK. A sufficient condition for Assumption 2 is that F(x, y) is bounded and $0 < \beta < 1$. But weaker conditions often work too

Ensuring sequence problem is well-defined

• Now define partial sums of the form

$$u_n(\boldsymbol{x}) \equiv \sum_{t=0}^n \beta^t F(x_t, x_{t+1}), \qquad \boldsymbol{x} \in \pi(x_0)$$

By Assumption 2, we can also define the limit

$$u(\boldsymbol{x}) \equiv \lim_{n \to \infty} u_n(\boldsymbol{x})$$

• This allows us to define a supremum function v^* by

$$v^*(x_0) \equiv \sup_{\boldsymbol{x} \in \pi(x_0)} u(\boldsymbol{x})$$
(S)

 $(S) \Rightarrow (R)$

- Under Assumptions 1 and 2, the v^* that solves (S) also solves (R)
- What about the converse?
- Suppose v solves (R), does v also solve (S)? That is, does $v = v^*$?

Partial converse

• In general no

• But suppose v solves (R) and satisfies boundedness condition

$$\lim_{n \to \infty} \beta^n v(x_n) = 0, \quad \text{for all } \boldsymbol{x} \in \pi(x_0) \text{ and } x_0 \in X$$
 (B)
Then $v = v^*$

- In other words, v^* solves (R) but (R) may have other solutions
- If (R) has other solutions, they violate boundedness condition (B)

Maximum theorem

Let $X \subseteq \mathbb{R}^n$ and $Y \subseteq \mathbb{R}^m$ and let the function $f: X \times Y \to \mathbb{R}$ be continuous and let the correspondence $\Gamma: X \rightrightarrows Y$ be compact-valued and continuous. Then (i) the function

$$h(x) \equiv \max_{y \in \Gamma(x)} f(x, y)$$

is continuous and (ii) the solution correspondence $G: X \rightrightarrows Y$ given by

$$G(x) \equiv \underset{y \in \Gamma(x)}{\operatorname{argmax}} f(x, y) = \{ y \in \Gamma(x) : f(x, y) = h(x) \}$$

is nonempty, compact-valued and upper hemicontinuous (see appendix)

REMARK. If f(x, y) is strictly concave in y and $\Gamma(x)$ is convex, the solution correspondence is single-valued and we write it g(x). Since g(x) is single valued and upper hemicontinuous, it is continuous

Bounded returns

• Let's now focus on the functional equation

$$v(x) = \max_{y \in \Gamma(x)} [F(x, y) + \beta v(y)], \quad \text{for all } x \in X$$

with some additional structure

- ASSUMPTION 3. $X \subseteq \mathbb{R}^n$ is convex and the correspondence $\Gamma: X \rightrightarrows X$ is nonempty, compact-valued and continuous
- Assumption 4. $F: A \to \mathbb{R}$ is bounded, continuous and $0 < \beta < 1$

Bounded returns

• Recall C(X) is set of bounded continuous functions $f: X \to \mathbb{R}$

We can now conclude that the operator

$$Tf(x) = \max_{y \in \Gamma(x)} [F(x, y) + \beta f(y)],$$
 for all $x \in X$

maps C(X) to C(X). That is, if $f \in C(X)$ then $Tf \in C(X)$ too

- This is because, under Assumptions 3 and 4:
 - the RHS maximizes a continuous function over a compact-valued, continuous correspondence, hence (i) the maximum is attained, and (ii), by the maximum theorem, Tf is continuous
 - both F and f are bounded, so Tf is bounded

Bounded returns

- So T maps C(X) to C(X)
- Moreover T satisfies Blackwell's conditions, so T is a contraction
- Since C(X) is a complete metric space and T is a contraction, there is a unique fixed point $v = Tv \in C(X)$ that solves (R)
- Since Assumptions 1, 2 and the boundedness condition (B) are satisfied, this v also solves (S)
- What else can we say about v?

A useful result

• Let (S, d) be a complete metric space and let $T: S \to S$ be a contraction mapping with fixed point $v \in S$. Then

(i) if S' is a closed subset of S and $T(S') \subseteq S'$ then $v \in S'$, and

(ii) if $T(S') \subseteq S'' \subseteq S$, then $v \in S''$

Examples

• Let

- S denote the set of continuous functions
- -S' denote the set of nondecreasing functions, and
- -S'' denote the set of strictly increasing functions
- Then
 - if T maps $f \in S$ to $Tf \in S'$ then $v \in S'$ so v nondecreasing

- if T maps $f \in S'$ to $Tf \in S''$ then $v \in S''$ so v strictly increasing

General idea

- Suppose f has some property \mathcal{P} and T preserves this property. Then Tf also has \mathcal{P}
- Then by induction $T^n f$ also has has \mathcal{P} for any finite n = 0, 1, ...
- Then if \mathcal{P} is a property that is preserved by uniform convergence, the fixed point v = Tv also has \mathcal{P}

Monotonicity

- Suppose we also have the following *monotonicity* assumptions
- Assumption 5. F(x, y) strictly increasing in x for each y
- Assumption 6. $\Gamma(x)$ increasing in that if $x \leq x'$ then $\Gamma(x) \subseteq \Gamma(x')$

Value function v is strictly increasing

 Suppose the primitives X, Γ, F, β satisfy Assumptions 3, 4, 5 and 6 and suppose v is the unique solution to

$$v(x) = \max_{y \in \Gamma(x)} [F(x, y) + \beta v(y)], \quad \text{for all } x \in X$$

• Then the value function v is strictly increasing

Proof (sketch)

• Let $f \in C(X)$ and let x < x'. Then we have

$$Tf(x) = \max_{y \in \Gamma(x)} \left[F(x, y) + \beta f(y) \right]$$

$$\leq \max_{y \in \Gamma(x')} \left[F(x,y) + \beta f(y) \right]$$

$$< \max_{y \in \Gamma(x')} \left[F(x', y) + \beta f(y) \right] = Tf(x')$$

• Hence T maps bounded continuous functions f into bounded continuous and strictly increasing functions Tf

Proof (sketch)

- Now let C'(X) denote the set of bounded continuous nondecreasing functions on X and let C''(X) ⊂ C'(X) denote the set of bounded continuous strictly increasing functions
- Then since T maps $f \in C'(X)$ to $Tf \in C''(X)$ the fixed point $v = Tv \in C''(X)$ too. Hence v is strictly increasing

Curvature

- ASSUMPTION 7. F is strictly concave, that is, for any $\theta \in (0, 1)$ $F(\theta(x, y) + (1 - \theta)(x', y')) > \theta F(x, y) + (1 - \theta)F(x', y')$ for any (x, y) and (x', y') in the graph of Γ
- ASSUMPTION 8. Γ is convex in the sense that for any $\theta \in (0, 1)$

$$y \in \Gamma(x)$$
 and $y' \in \Gamma(x')$

implies

$$\theta y + (1 - \theta)y' \in \Gamma(\theta x + (1 - \theta)x')$$

for any $x, x' \in X$

(since X is convex, equivalent to assuming graph of Γ is convex)

Value function v is strictly concave

• Suppose the primitives X, Γ, F, β satisfy Assumptions 3, 4 and 7, 8 and suppose v is the unique solution to

$$v(x) = \max_{y \in \Gamma(x)} \left[F(x, y) + \beta v(y) \right], \quad \text{for all } x \in X$$

- Then v is strictly concave
- Moreover there is a continuous single-valued policy function y = g(x) that attains the maximum

Proof (sketch)

• Let $x \neq x'$ and let $x_{\theta} = \theta x + (1 - \theta)x'$ for $\theta \in (0, 1)$

• Let $y \in \Gamma(x)$ be such that $Tf(x) = F(x, y) + \beta f(x)$ and likewise Let $y' \in \Gamma(x')$ be such that $Tf(x') = F(x', y') + \beta f(x')$

• Then

 $Tf(x_{\theta}) \ge F(x_{\theta}, y_{\theta}) + \beta f(y_{\theta})$

 $> \theta \left[F(x,y) + \beta f(y) \right] + (1-\theta) \left[F(x',y') + \beta f(y') \right]$

$$= \theta T f(x) + (1 - \theta) T f(x')$$

Hence Tf is strictly concave

Proof (sketch)

- Now let C'(X) denote the set of bounded continuous concave functions on X and let $C''(X) \subset C'(X)$ denote the set of bounded continuous strictly concave functions
- Then since T maps $f \in C'(X)$ to $Tf \in C''(X)$ the fixed point $v = Tv \in C''(X)$ too. Hence v is strictly concave
- Then since the RHS of Tv is strictly concave in y and the constraint set $\Gamma(x)$ is convex, by the maximum theorem there is a unique y = g(x) that attains the maximum

Benveniste-Scheinkman theorem

• Let $X \subseteq \mathbb{R}^n$ be convex and let $v : X \to \mathbb{R}$ be continuous and concave. Fix $x_0 \in D \subseteq X$. If there exists a concave differentiable function $w : D \to \mathbb{R}$ such that

 $w(x_0) = v(x_0)$

and

 $w(x) \le v(x)$ for all $x \in D$

• Then v is differentiable at x_0 and

$$\frac{\partial v(x_0)}{\partial x_i} = \frac{\partial w(x_0)}{\partial x_i}$$

Proof (sketch)

• A supergradient of a concave function v at x_0 is a vector p such that

$$p \cdot (x - x_0) \ge v(x) - v(x_0)$$
 for all $x \in X$

Generalizes the notion of a gradient to nondifferentiable functions. For continuous functions there is always at least one supergradient. For a differentiable function, the supergradient is unique

• But then

$$p \cdot (x - x_0) \ge v(x) - v(x_0) \ge w(x) - w(x_0) \quad \text{for all } x \in D$$

Since p is a supergradient of w and w is differentiable, p is unique. Since p is unique, v is differentiable at x_0

Value function v is differentiable

- Assumption 9. F is continuously differentiable on its interior
- Now suppose the primitives X, Γ, F, β satisfy Assumptions 3, 4 and
 7, 8, 9 and suppose v is the unique solution to

$$v(x) = \max_{y \in \Gamma(x)} [F(x, y) + \beta v(y)], \quad \text{for all } x \in X$$

and that y = g(x) is the policy function that attains the maximum

• Then v is continuously differentiable on its interior with

$$\frac{\partial v(x)}{\partial x_i} = \left. \frac{\partial F(x, y)}{\partial x_i} \right|_{y=g(x)}$$

(cf., the envelope condition)

Proof (sketch)

• Fix some x_0 and define

$$w(x) \equiv F(x, g(x_0)) + \beta v(x_0)$$

• Since F is concave and differentiable, so is w. Moreover note that

$$w(x) \le \max_{y \in \Gamma(x)} \left[F(x, y) + \beta v(y) \right] = v(x)$$

with equality at $x = x_0$

• Hence Benveniste-Scheinkman conditions satisfied and v is differentiable at x_0

Next class

- Practical dynamic programming
- Solving dynamic programming problems like this on a computer

Appendix: continuity for correspondences

Consider a correspondence $\Gamma: X \rightrightarrows Y$

Because of the ambiguity of defining the inverse of a correspondence, there are two notions of continuity

A correspondence Γ is *lower hemicontinuous* (lhc) at $x \in X$ if (i) $\Gamma(x)$ is nonempty and (ii) for every $y \in \Gamma(x)$ and sequence $x_n \to x$, there exists $N \ge 1$ and sequence $y_n \to y$ such that $y_n \in \Gamma(x_n)$ for all $n \ge N$

Roughly speaking, Γ is lhc if it avoids 'exploding in the limit' at x and is not lhc if it 'jumps up' at x

Appendix: continuity for correspondences

A compact-valued correspondence Γ is upper hemicontinuous (uhc) at $x \in X$ if (i) $\Gamma(x)$ is nonempty and (ii) for every sequence $x_n \to x$ and every y_n such that $y_n \in \Gamma(x_n)$, there exists a convergent subsequence of y_n with limit $y \in \Gamma(x)$

Roughly speaking, Γ is uhc if it avoids 'imploding in the limit' at x and is not uhc if it 'jumps down' at x

 Γ is *continuous* at $x \in X$ if it is both lhc *and* uhc at x

If Γ is single-valued and uhc it is continuous in the usual sense