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This class

e Principle of optimality

— 1is solving the Bellman equation the same as solving the original
sequence problem?

e Properties of the value function [skim this, for reference]

— using the maximum theorem and the contraction mapping theorem
to deduce properties of the value function

— what conditions are needed for value function to be increasing?
concave? differentiable?



Sequence vs. recursive formulations

e General form of the sequence problem is to find

o
SUup Z 5tF($t7$t+1)

{zt+1}20 =0

subject to a sequence of constraint sets
ri41 € (), t=20,1,2,...
and given initial condition
ro € X
e Corresponding to this is the recursive problem

v(z) = sup |F(z,y)+ Bu(y)] for all z € X
yel'(x)



Principle of optimality

Do the solutions to these problems coincide?

General idea is that

(i) solution v to (R) evaluated at x = xg gives the sup in (S), and
(ii) a sequence {x;11}52, attains the sup in (S) if and only if

/U(xt) :F(:Utaxt—I—l)_'_ﬁ/U(:Et-l—l)a t:071727"'

Bellman called this general idea the Principle of Optimality

What assumptions on the primitives deliver this result?



Four primitives

State space X C R"

Correspondence (set-valued function) I' : X = X describing
feasible choices as function of current state £ € X

The graph of this correspondence is
A =graph(l') ={(z,y) e X x X : yeI'(z)}

Return function F': A — R giving flow payoft

Discount factor 5 > 0



Feasible plans

e Let m(xg) denote set of feasible plans {xiy1};2, starting from zg

n(wo) = { {fee}o ¢ w €T(@), t=0,1,2,..}

e Let & € w(xg) denote a typical feasible plan



Ensuring sequence problem is well-defined

e AsSSUMPTION 1. Constraint set I'(x) nonempty for all z € X

o ASSUMPTION 2. The objective lim, o0 >, BUF (x4, w441) exists
for all zg € X and all € w(x)

REMARK. A sufficient condition for Assumption 2 is that F'(x,y)
is bounded and 0 < 8 < 1. But weaker conditions often work too



Ensuring sequence problem is well-defined

e Now define partial sums of the form

un(x) = ZBtF(xt, Tii1), x € m(xp)
t=0

By Assumption 2, we can also define the limit

e This allows us to define a supremum function v* by

v () = Su(p | u(x)
xem(xo



e Under Assumptions 1 and 2, the v* that solves (S) also solves (R)
e What about the converse?

e Suppose v solves (R), does v also solve (S)? That is, does v = v*?



Partial converse

In general no

But suppose v solves (R) and satisfies boundedness condition

li_)m B"v(xy) =0, for all x € m(zg) and zg € X (B)
Then v = v*

In other words, v* solves (R) but (R) may have other solutions

If (R) has other solutions, they violate boundedness condition (B)
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Maximum theorem

Let X CR"™ and Y C R™ and let the function f : X XY — R be
continuous and let the correspondence I' : X = Y be compact-valued
and continuous. Then (i) the function

h(z) = max fz,y)

is continuous and (ii) the solution correspondence G : X = Y given by

G(r) = Argmax flz,y) =1y e T(@) : fz,y) = h(z)}

is nonempty, compact-valued and upper hemicontinuous (see appendix)

REMARK. If f(x,y) is strictly concave in y and I'(x) is convex, the
solution correspondence is single-valued and we write it g(x). Since
g(x) is single valued and upper hemicontinuous, it is continuous
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Bounded returns

e Let’s now focus on the functional equation

v(z) = max_|F(z,y) + Bv(y)], for all z € X
yel'(z)

with some additional structure

e ASSUMPTION 3. X C R" is convex and the correspondence
I': X = X is nonempty, compact-valued and continuous

e ASSUMPTION 4. F': A — R is bounded, continuous and 0 < 8 < 1
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Bounded returns

e Recall C'(X) is set of bounded continuous functions f : X — R
We can now conclude that the operator

Tf(z) = max |F(z,y)+ Bf(y)], for all z € X
yel'(z)

maps C(X) to C(X). That is, if f € C'(X) then Tf € C'(X) too
e This is because, under Assumptions 3 and 4:

— the RHS maximizes a continuous function over a compact-valued,
continuous correspondence, hence (i) the maximum is attained, and
(ii), by the maximum theorem, T'f is continuous

— both F and f are bounded, so T'f is bounded
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Bounded returns

So T maps C'(X) to C(X)
Moreover 1" satisfies Blackwell’s conditions, so 7' is a contraction

Since C'(X) is a complete metric space and T is a contraction,
there is a unique fixed point v = T'v € C'(X) that solves (R)

Since Assumptions 1, 2 and the boundedness condition (B) are
satisfied, this v also solves (S)

What else can we say about v?
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A useful result

e Let (5,d) be a complete metric space and let T': S — S be a
contraction mapping with fixed point v € S. Then

(i) if S’ is a closed subset of S and T'(S”) C S’ then v € S/, and

(ii) if T'(S") € 8" C S, then v € §”
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Examples

o [t

— S denote the set of continuous functions
— S’ denote the set of nondecreasing functions, and

— 5" denote the set of strictly increasing functions

e Then

— if Tmaps f € StoTf €S’ then v € §' so v nondecreasing

— if Tmaps f €S toTf €S” then v € S” so v strictly increasing
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(GGeneral 1dea

e Suppose f has some property P and 1’ preserves this property.
Then T'f also has P

e Then by induction 7™ f also has has ‘P for any finite n = 0,1, ...

e Then if P is a property that is preserved by uniform convergence,
the fixed point v = T'v also has P
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Monotonicity

e Suppose we also have the following monotonicity assumptions
e ASSUMPTION 5. F'(x,y) strictly increasing in x for each y

e ASSUMPTION 6. I'(x) increasing in that if x < 2’ then I'(x) C I'(z)
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Value function v is strictly increasing

e Suppose the primitives X, I, F, 5 satisfy Assumptions 3, 4, 5 and 6
and suppose v is the unique solution to

v(z) = max |F(z,y) + Bvu(y)], for all x € X
yel ()

e Then the value function v is strictly increasing
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Proof (sketch)

o Let f € C(X) and let x < 2'. Then we have

Tf(z)= max [F(z,y)+B8f()]

< max [F(a',y) +Bf(y)] = T/()
yel'(z’)

e Hence 1" maps bounded continuous functions f into bounded
continuous and strictly increasing functions 1'f
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Proof (sketch)

e Now let C'(X) denote the set of bounded continuous
nondecreasing functions on X and let C”(X) C C'(X) denote the
set of bounded continuous strictly increasing functions

e Then since T maps f € C'(X) to T'f € C"(X) the fixed point
v="Tv € C"(X) too. Hence v is strictly increasing
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Curvature

e ASSUMPTION 7. F' is strictly concave, that is, for any 6 € (0, 1)
F(0(z,y) + (1= 0)(2",y")) > 0F(z,y) + (1 - 0)F (', y)

for any (z,y) and (2',y’) in the graph of I’

e ASSUMPTION 8. I' is convex in the sense that for any 6 € (0, 1)
y € I'(z) and ¢y € T'(z')
implies
Oy + (1 —0)y eT'(0x+ (1 —0)x")
for any =z, 2’ € X

(since X is convex, equivalent to assuming graph of I' is convex)
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Value function v is strictly concave

e Suppose the primitives X, I, F, 5 satisfy Assumptions 3, 4 and 7, 8
and suppose v is the unique solution to

v(z) = max_|F(z,y) + Bv(y)], for all z € X
yel'(z)

e Then v is strictly concave

e Moreover there is a continuous single-valued policy function
y = g(x) that attains the maximum
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Proof (sketch)

o Let x £ 2’ and let g = 0x + (1 — 0)z’ for 6 € (0,1)

F(x, y) + B f(x) and likewise

o Let y € I'(x) be such that T'f(z) =
') = F(2',y) + Bf(z)

Let vy € I'(z") be such that T'f(

e Then

Tf(xe) > F(xo,Y0) + Bf (o)
> 0|F(x,y)+ Bf(y)| +(1=0)|F(z',y) + Bf(Y)]

=0T f(x) + (1 - 0)Tf(a)

Hence T'f is strictly concave
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Proof (sketch)

e Now let C'(X) denote the set of bounded continuous concave
functions on X and let C"(X) C C'(X) denote the set of bounded

continuous strictly concave functions

® Then since T maps f € C'(X) to T'f € C"(X) the fixed point
v="Tv € C"(X) too. Hence v is strictly concave

e Then since the RHS of T'v is strictly concave in y and the

constraint set I'(x) is convex, by the maximum theorem there is a
unique y = g(x) that attains the maximum
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Benveniste-Scheinkman theorem

o Let X C R"™ be convex and let v : X — R be continuous and
concave. Fix g € D C X. If there exists a concave differentiable
function w : D — R such that

w(xg) = v(xg)
and
w(x) < v(x) for all z € D

e Then v is differentiable at x¢ and

ov(xop) B ow(xg)
8$Z‘ B 8@
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Proof (sketch)

e A supergradient of a concave function v at xq is a vector p such that
p-(x—z0) > v(x) —v(xg) for all x € X

Generalizes the notion of a gradient to nondifferentiable functions.
For continuous functions there is always at least one supergradient.
For a differentiable function, the supergradient is unique

e But then
p-(x—x0) > v(z) —v(20) > W(T) — W(TN) for all z € D

Since p is a supergradient of w and w is differentiable, p is unique.
Since p is unique, v is differentiable at xg
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Value function v is differentiable

e ASSUMPTION 9. F'is continuously differentiable on its interior

e Now suppose the primitives X, I', F, 8 satisfy Assumptions 3, 4 and
7, 8,9 and suppose v is the unique solution to

v(z) = max_ |F(z,y) + Bu(y)], for all z € X
yel'(z)

and that y = g(x) is the policy function that attains the maximum

e Then v is continuously differentiable on its interior with

ov(r) OF(z,y)
(9:137; N 8%2

y=g(x)

(cf., the envelope condition)
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Proof (sketch)

e Fix some g and define

w(z) = F(z, g(x0)) + Bv(zo)
e Since F'is concave and differentiable, so is w. Moreover note that

w(@) < max [F(z.9) + Boly)] = v(a)

with equality at © = xg

e Hence Benveniste-Scheinkman conditions satisfied and v is
differentiable at xg
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Next class

e Practical dynamic programming

e Solving dynamic programming problems like this on a computer
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Appendix: continuity for correspondences

Consider a correspondence I' : X = Y

Because of the ambiguity of defining the inverse of a correspondence,
there are two notions of continuity

A correspondence I' is lower hemicontinuous (lhc) at x € X if (i) I'(x)
is nonempty and (ii) for every y € I'(x) and sequence x,, — x, there
exists N > 1 and sequence ¥, — y such that y,, € I'(z,,) for all n > N

Roughly speaking, I' is lhc if it avoids ‘exploding in the limit’ at x and
is not lhc if it ‘jumps up’ at x
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Appendix: continuity for correspondences

A compact-valued correspondence I' is upper hemicontinuous (uhc) at
x € X if (i) I'(x) is nonempty and (ii) for every sequence x, — = and
every y, such that y, € I'(x,,), there exists a convergent subsequence of
Y, with limit y € I'(x)

Roughly speaking, I' is uhc if it avoids ‘imploding in the limit’ at x and
is not uhc if it ‘jumps down’ at x

I' is continuous at x € X if it is both lhc and uhc at x

If I' is single-valued and uhc it is continuous in the usual sense
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