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This class

e Rough sketch of some important mathematical background

— metric spaces and normed vector spaces
— contraction mapping theorem

— Blackwell’s sufficient conditions for a contraction



Motivation

e To solve dynamic programming problems, want to find fixed points

v="Tv
where 1" is an operator like

Tv(k) = ngwngzc(k) Lu(f(k) — ) + Bu(z) |

e We will approach this problem by viewing functions v as elements
in an abstract vector space and then studying the convergence
properties of sequences v,, of such functions induced by 7T’

Unt1(k) = Ton ()



Vector spaces

A wector space over R is a nonempty set X together with the operations
of vector addition and scalar multiplication such that for all z,y,z € X
and any a,b € R

(i) (z

+y)+z=x+ (y+ 2) (associativity of addition)
r+y=vy—+x (commutativity of addition)

there exists unique 0 € X such that xt + 0 ==
there exists unique —z € X such that x 4+ (—x) =0

a(br) = (ab)x (compatibility)
le ==x (identity element)
a(x +vy) = ax + ay (distributivity wrt vector addition)
(a+b)xr =ax + bx (distributivity wrt scalar addition)

there is nothing here that says a vector need be finite.
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Examples

These are vector spaces:

e any finite-dimensional Euclidean space R"
e the set of infinite sequences {zg,z1,...} with each z; € R

e the set of continuous functions on the interval |a, b]

These are not vector spaces:

e the unit circle in R?
e the set of integers Z ={...,—1,0,4+1,...}

e the set of nonnegative functions on |a, b]



We will view functions v as elements in a suitably chosen vector space.

Will be interested in whether a sequence v,, of such functions converges.

This requires a notion of the distance between such functions.



Metric spaces

A metric space is a nonempty set S and a metric (distance function)
d:S xS — R such that for all x,y,z € S

(i) d(z,y) =0iff x =y

(ii) d(z,y) = d(y,z) (symmetry)

(iii) d(z,y) < d(zx,z) + d(z,y) (triangle inequality)

REMARK: the set S here need not be a vector space.



Examples

These are metric spaces:

e any nonempty set S with the discrete metric, d(x,y) = 1{x # y}
e any finite-dimensional R" with a distance of the form

n 1/p
wy)z(Z!m—%V’) , 1<p<oo
1=1
and
d(:v,y)zmgX(m—yﬂ), p =00

e the set of continuous functions on |a, b] with a distance of the form

1/p
(/ () ]pdt> : 1<p<x

d(z,y) = max (|z(t) —y(@)]),  p=oo

and
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Normed vector spaces

A normed vector space is a vector space S and a norm || - || : S - R
such that for all x,y € S and any a € R

(i) ||z|| =0iff z =0

(ii) [laz| = |a] - {l]]

(iii) ||z +y| < ||lz|| + ||y|| (triangle inequality)

REMARK: any normed vector space can be viewed as a metric space by
taking d(z,y) = ||z — yl|.



Examples

These are normed vector spaces:

e any finite-dimensional R" with

n 1/p
qu=<2m|p> C l<p<oo
1=1

and

) = masx (|as])

e the set of continuous functions on |a, b] with

b 1/p
uxuz(/ \x<t>rpdt)  1<p<oo
d

| = max (Jo(t)])

aln
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Convergence

A sequence {z,}°° , converges to x € S if for any € > 0 there exists an
N; such that

d(zn,x) <€ for all n > N,

REMARK: in other words, the sequence {x,} convergences to xz € S if
the sequence of real numbers {d(x,,z)} converges to zero.
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Cauchy criterion

A sequence {z,}°° , satisfies the Cauchy criterion if for any € > 0 there
exists an N, such that

d(Tp, Tm) < € for all n,m > N¢

REMARK: this is a weaker notion than convergence, but can be checked
without knowledge of a candidate limit .
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Examples

The sequence {1, 3 . } is a Cauchy sequence in R.

72737'

The sequence {+1,—1,41,—1,...} is not a Cauchy sequence in R.
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Cauchy sequences

Every convergent sequence is Cauchy.
Every Cauchy sequence is bounded.

But not every Cauchy sequence converges.
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Completeness

A metric space (S, d) is complete if every Cauchy sequence in S
converges to a point in S.

A normed vector space that is complete is known as a Banach space.
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Examples
These are complete normed vector spaces:
e any finite-dimensional R™ with

n 1/p
mu=<§]mw> C l<p<o
1=1

or

|2l = max (|as])

e the set of continuous functions on |a, b] with

|| = max (Jo(t)])

This is not a complete normed vector space:
e the set of continuous functions on |a, b] with

b 1/p
muz(/NaﬂWﬂ)  1<pen
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An important space

Let X C R" and let C'(X) be the set of bounded continuous functions
f : X — R equipped with the norm

IfIl = sup (|f(x)])

reX

Then C(X) is complete.

REMARK: if X is compact, then every continuous f : X — R is
bounded. Otherwise the restriction to bounded functions is needed.

This is known as the sup norm or uniform norm.
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Contraction mappings

Let (S,d) be a metric space and let T': S — S. Then T is a contraction
mapping (with modulus () if for some 8 € (0,1)

d(Txz, Ty) < Bd(x,y), for all z,y € S

REMARK: in other words, applying 7' brings x and vy closer together.
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Example

Let S = [a,b] and d(x,y) = |r — y|. Then T is a contraction mapping if
for some 8 € (0,1)

< B <1, for all x,y € S with x # vy

In other words, if slope of 7' is uniformly less than one in absolute value.
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Contraction mapping theorem

Let (S, d) be a complete metric space and let T': S — S be a
contraction mapping. Then 7' has a unique fixed point x = Tz in S.

This is sometimes known as the Banach fixed point theorem.
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Proof (sketch)
Step (i). Showing that iterates of T' form a Cauchy sequence.

Fix any initial ¢ € S and generate x,, = T"xg for n = 0,1,... via the
recursion x,+1 = T'x,. Since 1" is a contraction

d(z2,71) = d(Tx1,Tx) < Bd(71,70)
Similarly for any n > 1
d(xn-l—la CEn) < Bnd(xla ZE())

Hence for any m > n, by repeated use of the triangle inequality

d(SCm, ajn) < d(.fl?m, xm—l) + 0+ d(xn—l—% xn—l—l) + d(xn-l—la xn)
<B4 BT 4 B d(w, 20)
= BB 4 4 B+ 1d(2, o)

< 15_n6d(2717330)
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Proof (sketch)

Hence {x,} is Cauchy. Since S is complete, x,, — x in S.
Step (ii). Showing that limit is a fixed point of T.
Again by the triangle inequality,

d(Tx,x) < d(Tx,T"xq9) + d(T"xq, )

< Bd(x, T" Yzg) + d(T"x, x)
In the limit as n — oo the RHS terms both go to zero.

Hence in the limit d(Tx,x) =0 or x = T'x.
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Proof (sketch)

Step (iii). Showing that this fixed point is unique.
Suppose not. Then there exists another fixed point 2’ # = such that
0<d=d(z,2")=dTz, T2') < Bd(z,z’) = 36

But this is impossible since 5 € (0,1). Hence the fixed point is unique.
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Blackwell’s sufficient conditions

Let X CR"™ and let B(X) be the set of bounded functions f: X — R
equipped with the sup norm. Let T be a mapping from B(X) to B(X)
satisfying:

(i) (monotonicity) f < g implies T'f < Tg for all f,g € B(X)
(ii) (discounting) there exists 8 € (0,1) such that

T(f+a) <Tf+ Ba, for all f € B(X)
where f + a is the function f(x) + a for any x € X and any a > 0

Then 7' is a contraction mapping.

REMARK: these are sufficient conditions only, they are not necessary.
In applications, they are often quite easy to check.
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Proof (sketch)

Let v,w € B(X). Then

v(z) =v(z) +w(r) — wx)
< w(z) + |v(z) — w(z)]

<w(x)+ ||lv—w|, for all x € X
Since T satisfies (i) and (ii) we have
Tov<T(w+ [lv—-wl]) <Tw+ Bllv—w|

Repeating this argument with the roles of v, w reversed

Tw <Tw+|v—w|) <Tv+ B|lv—w|
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Proof (sketch)

These last two inequalities imply

Tv(x) — Tw(x)| < Bllv—wl|], for all z € X
Hence indeed

1Ty = Twl|| < §lv —w]]

So 1" is a contraction.
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Application to the growth model

Consider our usual Bellman operator:

Tu(k) = max |u(f(k) — z) + Bv(z) |

T

(i) Monotonicity. If v < w then
u(f(k) —z) + Bv(z) <u(f(k) —x) + pw(z),  forall z
SO

max [u(f(k) — ) + fu(x) ] < max [u(f(k) - 2) + ()]

X X

SO
Tv(k) < Tw(k)
Hence T’ satisfies the monotonicity property.
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Application to the growth model

(ii)) Discounting. For any a > 0 we have

T(v+a)(k) = max [u(f(k) —2)+ B(v(z) +a)]

X

= Tv(k) + Ba
Hence 1" satisfies the discounting property.

Since (i) and (ii) are satisfied, T is a contraction.
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Next class

e This argument takes as granted that v € C(X) so that we may
apply the contraction mapping theorem

e What guarantees that v € C'(X)?

e What else can we say about the value function? Is it increasing?
concave? differentiable?
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