Macroeconomics

Lecture 4: dynamic programming methods, part two

Chris Edmond

1st Semester 2019

This class

- Rough sketch of some important mathematical background
 - metric spaces and normed vector spaces
 - contraction mapping theorem
 - Blackwell's sufficient conditions for a contraction

Motivation

• To solve dynamic programming problems, want to find fixed points

v = Tv

where T is an operator like

$$Tv(k) \equiv \max_{0 \le x \le f(k)} \left[u(f(k) - x) + \beta v(x) \right]$$

• We will approach this problem by viewing functions v as elements in an abstract vector space and then studying the convergence properties of sequences v_n of such functions induced by T

 $v_{n+1}(k) = Tv_n(k)$

Vector spaces

A vector space over \mathbb{R} is a nonempty set X together with the operations of vector addition and scalar multiplication such that for all $x, y, z \in X$ and any $a, b \in \mathbb{R}$

(i)
$$(x+y)+z = x + (y+z)$$
(associativity of addition)(ii) $x+y = y+x$ (commutativity of addition)

(iii) there exists unique
$$\mathbf{0} \in X$$
 such that $x + \mathbf{0} = x$
(iv) there exists unique $-x \in X$ such that $x + (-x) = \mathbf{0}$

(v)	a(bx) = (ab)x	(compatibility)
(vi)	1x = x	(identity element)
(vii)	a(x+y) = ax + ay	(distributivity wrt vector addition)
(viii)	(a+b)x = ax + bx	(distributivity wrt scalar addition)

REMARK: there is nothing here that says a vector need be *finite*.

Examples

These are vector spaces:

- any finite-dimensional Euclidean space \mathbb{R}^n
- the set of infinite sequences $\{x_0, x_1, \dots\}$ with each $x_i \in \mathbb{R}$
- the set of continuous functions on the interval [a, b]

These are *not* vector spaces:

- the unit circle in \mathbb{R}^2
- the set of integers $\mathbb{Z} = \{\dots, -1, 0, +1, \dots\}$
- the set of nonnegative functions on [a, b]

We will view functions v as elements in a suitably chosen vector space.

Will be interested in whether a sequence v_n of such functions *converges*.

This requires a notion of the *distance* between such functions.

Metric spaces

A metric space is a nonempty set S and a metric (distance function) $d: S \times S \to \mathbb{R}$ such that for all $x, y, z \in S$

(i)
$$d(x, y) = 0$$
 iff $x = y$

(ii)
$$d(x,y) = d(y,x)$$
 (symmetry)

(iii)
$$d(x,y) \le d(x,z) + d(z,y)$$
 (triangle inequality)

REMARK: the set S here need not be a vector space.

Examples

These are metric spaces:

- any nonempty set S with the discrete metric, $d(x, y) = \mathbb{1}\{x \neq y\}$
- $\bullet\,$ any finite-dimensional \mathbb{R}^n with a distance of the form

$$d(x,y) = \left(\sum_{i=1}^{n} |x_i - y_i|^p\right)^{1/p}, \quad 1 \le p < \infty$$

and

$$d(x, y) = \max_{i} \left(\left| x_{i} - y_{i} \right| \right), \qquad p = \infty$$

• the set of continuous functions on [a, b] with a distance of the form

$$d(x,y) = \left(\int_a^b |x(t) - y(t)|^p dt\right)^{1/p}, \qquad 1 \le p < \infty$$

and

$$d(x, y) = \max_{a \le t \le b} (|x(t) - y(t)|), \qquad p = \infty$$

Normed vector spaces

A normed vector space is a vector space S and a norm $\|\cdot\|: S \to \mathbb{R}$ such that for all $x, y \in S$ and any $a \in \mathbb{R}$

(i)
$$||x|| = 0$$
 iff $x = 0$

(ii)
$$||ax|| = |a| \cdot ||x||$$

(iii) $||x + y|| \le ||x|| + ||y||$ (triangle inequality)

REMARK: any normed vector space can be viewed as a metric space by taking d(x, y) = ||x - y||.

Examples

These are normed vector spaces:

• any finite-dimensional \mathbb{R}^n with

$$||x|| = \left(\sum_{i=1}^{n} |x_i|^p\right)^{1/p}, \quad 1 \le p < \infty$$

and

$$\|x\| = \max_i \left(\left| x_i \right| \right)$$

• the set of continuous functions on [a, b] with

$$||x|| = \left(\int_{a}^{b} |x(t)|^{p} dt\right)^{1/p}, \qquad 1 \le p < \infty$$

and

$$||x|| = \max_{a \le t \le b} (|x(t)|)$$

Convergence

A sequence $\{x_n\}_{n=0}^{\infty}$ converges to $x \in S$ if for any $\varepsilon > 0$ there exists an N_{ε} such that

 $d(x_n, x) < \varepsilon$ for all $n \ge N_{\varepsilon}$

REMARK: in other words, the sequence $\{x_n\}$ convergences to $x \in S$ if the sequence of real numbers $\{d(x_n, x)\}$ converges to zero.

Cauchy criterion

A sequence $\{x_n\}_{n=0}^{\infty}$ satisfies the *Cauchy criterion* if for any $\varepsilon > 0$ there exists an N_{ε} such that

 $d(x_n, x_m) < \varepsilon$ for all $n, m \ge N_{\varepsilon}$

REMARK: this is a weaker notion than convergence, but can be checked without knowledge of a candidate limit x.

Examples

The sequence $\{1, \frac{1}{2}, \frac{1}{3}, \dots\}$ is a Cauchy sequence in \mathbb{R} .

The sequence $\{+1, -1, +1, -1, ...\}$ is not a Cauchy sequence in \mathbb{R} .

Cauchy sequences

Every convergent sequence is Cauchy.

Every Cauchy sequence is bounded.

But not every Cauchy sequence converges.

Completeness

A metric space (S, d) is *complete* if every Cauchy sequence in S converges to a point in S.

A normed vector space that is complete is known as a *Banach space*.

Examples

These are complete normed vector spaces:

• any finite-dimensional \mathbb{R}^n with

$$||x|| = \left(\sum_{i=1}^{n} |x_i|^p\right)^{1/p}, \qquad 1 \le p < \infty$$

or

$$\|x\| = \max_i \left(\left| x_i \right| \right)$$

• the set of continuous functions on [a, b] with

$$||x|| = \max_{a \le t \le b} \left(\left| x(t) \right| \right)$$

This is *not* a complete normed vector space:

• the set of continuous functions on [a, b] with

$$||x|| = \left(\int_{a}^{b} |x(t)|^{p} dt\right)^{1/p}, \qquad 1 \le p < \infty$$

An important space

Let $X \subseteq \mathbb{R}^n$ and let C(X) be the set of bounded continuous functions $f: X \to \mathbb{R}$ equipped with the norm

 $||f|| = \sup_{x \in X} (|f(x)|)$

Then C(X) is complete.

REMARK: if X is compact, then every continuous $f: X \to \mathbb{R}$ is bounded. Otherwise the restriction to bounded functions is needed.

This is known as the *sup norm* or *uniform norm*.

Contraction mappings

Let (S, d) be a metric space and let $T : S \to S$. Then T is a contraction mapping (with modulus β) if for some $\beta \in (0, 1)$

 $d(Tx, Ty) \le \beta d(x, y),$ for all $x, y \in S$

REMARK: in other words, applying T brings x and y closer together.

Example

Let S = [a, b] and d(x, y) = |x - y|. Then T is a contraction mapping if for some $\beta \in (0, 1)$

$$\frac{|Tx - Ty|}{|x - y|} \le \beta < 1, \qquad \text{for all } x, y \in S \text{ with } x \neq y$$

In other words, if slope of T is uniformly less than one in absolute value.

Contraction mapping theorem

Let (S, d) be a complete metric space and let $T : S \to S$ be a contraction mapping. Then T has a *unique* fixed point x = Tx in S.

This is sometimes known as the Banach fixed point theorem.

Step (i). Showing that iterates of T form a Cauchy sequence.

Fix any initial $x_0 \in S$ and generate $x_n = T^n x_0$ for n = 0, 1, ... via the recursion $x_{n+1} = Tx_n$. Since T is a contraction

$$d(x_2, x_1) = d(Tx_1, Tx_0) \le \beta d(x_1, x_0)$$

Similarly for any $n \ge 1$

 $d(x_{n+1}, x_n) \le \beta^n d(x_1, x_0)$

Hence for any m > n, by repeated use of the triangle inequality

$$d(x_m, x_n) \leq d(x_m, x_{m-1}) + \dots + d(x_{n+2}, x_{n+1}) + d(x_{n+1}, x_n)$$

$$\leq [\beta^{m-1} + \dots + \beta^{n+1} + \beta^n] d(x_1, x_0)$$

$$= \beta^n [\beta^{m-n-1} + \dots + \beta + 1] d(x_1, x_0)$$

$$\leq \frac{\beta^n}{1 - \beta} d(x_1, x_0)$$

Hence $\{x_n\}$ is Cauchy. Since S is complete, $x_n \to x$ in S.

Step (ii). Showing that limit is a fixed point of T.

Again by the triangle inequality,

$$d(Tx,x) \le d(Tx,T^nx_0) + d(T^nx_0,x)$$

$$\leq \beta d(x, T^{n-1}x_0) + d(T^n x_0, x)$$

In the limit as $n \to \infty$ the RHS terms both go to zero.

Hence in the limit d(Tx, x) = 0 or x = Tx.

Step (iii). Showing that this fixed point is unique.

Suppose not. Then there exists another fixed point $x' \neq x$ such that

$$0 < \delta \equiv d(x, x') = d(Tx, Tx') \le \beta d(x, x') = \beta \delta$$

But this is impossible since $\beta \in (0, 1)$. Hence the fixed point is unique.

Blackwell's sufficient conditions

Let $X \subseteq \mathbb{R}^n$ and let B(X) be the set of bounded functions $f: X \to \mathbb{R}$ equipped with the sup norm. Let T be a mapping from B(X) to B(X) satisfying:

- (i) (monotonicity) $f \leq g$ implies $Tf \leq Tg$ for all $f, g \in B(X)$
- (ii) (discounting) there exists $\beta \in (0, 1)$ such that

 $T(f+a) \le Tf + \beta a$, for all $f \in B(X)$

where f + a is the function f(x) + a for any $x \in X$ and any $a \ge 0$

Then T is a contraction mapping.

REMARK: these are sufficient conditions only, they are not necessary. In applications, they are often quite easy to check.

Let $v, w \in B(X)$. Then v(x) = v(x) + w(x) - w(x) $\leq w(x) + |v(x) - w(x)|$ $\leq w(x) + ||v - w||$, for all $x \in X$

Since T satisfies (i) and (ii) we have

$$Tv \le T(w + \|v - w\|) \le Tw + \beta \|v - w\|$$

Repeating this argument with the roles of v, w reversed

$$Tw \le T(v + \|v - w\|) \le Tv + \beta \|v - w\|$$

These last two inequalities imply

$$|Tv(x) - Tw(x)| \le \beta ||v - w||, \quad \text{for all } x \in X$$

Hence indeed

$$\|Tv - Tw\| \le \beta \|v - w\|$$

So T is a contraction.

Application to the growth model

Consider our usual Bellman operator:

$$Tv(k) \equiv \max_{x} \left[u(f(k) - x) + \beta v(x) \right]$$

(i) Monotonicity. If $v \leq w$ then

$$u(f(k) - x) + \beta v(x) \le u(f(k) - x) + \beta w(x),$$
 for all x

 \mathbf{SO}

$$\max_{x} \left[u(f(k) - x) + \beta v(x) \right] \le \max_{x} \left[u(f(k) - x) + \beta w(x) \right]$$

 \mathbf{SO}

 $Tv(k) \le Tw(k)$

Hence T satisfies the monotonicity property.

Application to the growth model

(ii) Discounting. For any $a \ge 0$ we have

$$T(v+a)(k) = \max_{x} \left[u(f(k) - x) + \beta(v(x) + a) \right]$$

$$= \max_{x} \left[u(f(k) - x) + \beta v(x) \right] + \beta a$$

$$= Tv(k) + \beta a$$

Hence T satisfies the discounting property.

Since (i) and (ii) are satisfied, T is a contraction.

Next class

- This argument takes as granted that $v \in C(X)$ so that we may apply the contraction mapping theorem
- What guarantees that $v \in C(X)$?
- What else can we say about the value function? Is it increasing? concave? differentiable?