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This class

• Rough sketch of some important mathematical background

– metric spaces and normed vector spaces

– contraction mapping theorem

– Blackwell’s sufficient conditions for a contraction
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Motivation

• To solve dynamic programming problems, want to find fixed points

v = Tv

where T is an operator like

Tv(k) ⌘ max
0xf(k)

⇥
u(f(k)� x) + �v(x)

⇤

• We will approach this problem by viewing functions v as elements
in an abstract vector space and then studying the convergence
properties of sequences vn of such functions induced by T

vn+1(k) = Tvn(k)
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Vector spaces
A vector space over R is a nonempty set X together with the operations
of vector addition and scalar multiplication such that for all x, y, z 2 X
and any a, b 2 R

(i) (x+ y) + z = x+ (y + z) (associativity of addition)
(ii) x+ y = y + x (commutativity of addition)

(iii) there exists unique 0 2 X such that x+ 0 = x
(iv) there exists unique �x 2 X such that x+ (�x) = 0

(v) a(bx) = (ab)x (compatibility)
(vi) 1x = x (identity element)
(vii) a(x+ y) = ax+ ay (distributivity wrt vector addition)
(viii) (a+ b)x = ax+ bx (distributivity wrt scalar addition)

Remark: there is nothing here that says a vector need be finite.
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Examples

These are vector spaces:

• any finite-dimensional Euclidean space Rn

• the set of infinite sequences {x0, x1, . . . } with each xi 2 R
• the set of continuous functions on the interval [a, b]

These are not vector spaces:

• the unit circle in R2

• the set of integers Z = {. . . ,�1, 0,+1, . . . }
• the set of nonnegative functions on [a, b]
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We will view functions v as elements in a suitably chosen vector space.

Will be interested in whether a sequence vn of such functions converges.

This requires a notion of the distance between such functions.
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Metric spaces

A metric space is a nonempty set S and a metric (distance function)
d : S ⇥ S ! R such that for all x, y, z 2 S

(i) d(x, y) = 0 iff x = y

(ii) d(x, y) = d(y, x) (symmetry)

(iii) d(x, y)  d(x, z) + d(z, y) (triangle inequality)

Remark: the set S here need not be a vector space.
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Examples
These are metric spaces:

• any nonempty set S with the discrete metric, d(x, y) = {x 6= y}
• any finite-dimensional Rn with a distance of the form

d(x, y) =

 
nX

i=1

|xi � yi|p
!1/p

, 1  p < 1

and

d(x, y) = max
i

( |xi � yi| ) , p = 1

• the set of continuous functions on [a, b] with a distance of the form

d(x, y) =

✓Z b

a
|x(t)� y(t)|p dt

◆1/p

, 1  p < 1

and

d(x, y) = max
atb

( |x(t)� y(t)| ) , p = 1
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Normed vector spaces

A normed vector space is a vector space S and a norm k · k : S ! R
such that for all x, y 2 S and any a 2 R

(i) kxk = 0 iff x = 0

(ii) kaxk = |a| · kxk

(iii) kx+ yk  kxk+ kyk (triangle inequality)

Remark: any normed vector space can be viewed as a metric space by
taking d(x, y) = kx� yk.
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Examples
These are normed vector spaces:

• any finite-dimensional Rn with

kxk =

 
nX

i=1

|xi|p
!1/p

, 1  p < 1

and

kxk = max
i

( |xi| )

• the set of continuous functions on [a, b] with

kxk =

✓Z b

a
|x(t)|p dt

◆1/p

, 1  p < 1

and

kxk = max
atb

( |x(t)| )
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Convergence

A sequence {xn}1n=0 converges to x 2 S if for any " > 0 there exists an
N" such that

d(xn, x) < " for all n � N"

Remark: in other words, the sequence {xn} convergences to x 2 S if
the sequence of real numbers {d(xn, x)} converges to zero.
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Cauchy criterion

A sequence {xn}1n=0 satisfies the Cauchy criterion if for any " > 0 there
exists an N" such that

d(xn, xm) < " for all n,m � N"

Remark: this is a weaker notion than convergence, but can be checked
without knowledge of a candidate limit x.
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Examples

The sequence {1, 12 ,
1
3 , . . . } is a Cauchy sequence in R.

The sequence {+1,�1,+1,�1, . . . } is not a Cauchy sequence in R.
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Cauchy sequences

Every convergent sequence is Cauchy.

Every Cauchy sequence is bounded.

But not every Cauchy sequence converges.
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Completeness

A metric space (S, d) is complete if every Cauchy sequence in S
converges to a point in S.

A normed vector space that is complete is known as a Banach space.
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Examples
These are complete normed vector spaces:

• any finite-dimensional Rn with

kxk =

 
nX

i=1

|xi|p
!1/p

, 1  p < 1

or

kxk = max
i

( |xi| )

• the set of continuous functions on [a, b] with

kxk = max
atb

( |x(t)| )

This is not a complete normed vector space:
• the set of continuous functions on [a, b] with

kxk =

✓Z b

a
|x(t)|p dt

◆1/p

, 1  p < 1
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An important space

Let X ✓ Rn and let C(X) be the set of bounded continuous functions
f : X ! R equipped with the norm

kfk = sup
x2X

( |f(x)| )

Then C(X) is complete.

Remark: if X is compact, then every continuous f : X ! R is
bounded. Otherwise the restriction to bounded functions is needed.

This is known as the sup norm or uniform norm.
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Contraction mappings

Let (S, d) be a metric space and let T : S ! S. Then T is a contraction
mapping (with modulus �) if for some � 2 (0, 1)

d(Tx, Ty)  �d(x, y), for all x, y 2 S

Remark: in other words, applying T brings x and y closer together.
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Example

Let S = [a, b] and d(x, y) = |x� y|. Then T is a contraction mapping if
for some � 2 (0, 1)

|Tx� Ty|
|x� y|  � < 1, for all x, y 2 S with x 6= y

In other words, if slope of T is uniformly less than one in absolute value.
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Contraction mapping theorem

Let (S, d) be a complete metric space and let T : S ! S be a
contraction mapping. Then T has a unique fixed point x = Tx in S.

This is sometimes known as the Banach fixed point theorem.
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Proof (sketch)
Step (i). Showing that iterates of T form a Cauchy sequence.

Fix any initial x0 2 S and generate xn = Tnx0 for n = 0, 1, . . . via the
recursion xn+1 = Txn. Since T is a contraction

d(x2, x1) = d(Tx1, Tx0)  �d(x1, x0)

Similarly for any n � 1

d(xn+1, xn)  �nd(x1, x0)

Hence for any m > n, by repeated use of the triangle inequality

d(xm, xn)  d(xm, xm�1) + · · ·+ d(xn+2, xn+1) + d(xn+1, xn)

 [�m�1 + · · ·+ �n+1 + �n]d(x1, x0)

= �n[�m�n�1 + · · ·+ � + 1]d(x1, x0)

 �n

1� �
d(x1, x0)
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Proof (sketch)

Hence {xn} is Cauchy. Since S is complete, xn ! x in S.

Step (ii). Showing that limit is a fixed point of T .

Again by the triangle inequality,

d(Tx, x)  d(Tx, Tnx0) + d(Tnx0, x)

 �d(x, Tn�1x0) + d(Tnx0, x)

In the limit as n ! 1 the RHS terms both go to zero.

Hence in the limit d(Tx, x) = 0 or x = Tx.
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Proof (sketch)

Step (iii). Showing that this fixed point is unique.

Suppose not. Then there exists another fixed point x0 6= x such that

0 < � ⌘ d(x, x0) = d(Tx, Tx0)  �d(x, x0) = ��

But this is impossible since � 2 (0, 1). Hence the fixed point is unique.
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Blackwell’s sufficient conditions

Let X ✓ Rn and let B(X) be the set of bounded functions f : X ! R
equipped with the sup norm. Let T be a mapping from B(X) to B(X)
satisfying:

(i) (monotonicity) f  g implies Tf  Tg for all f, g 2 B(X)

(ii) (discounting) there exists � 2 (0, 1) such that

T (f + a)  Tf + �a, for all f 2 B(X)

where f + a is the function f(x) + a for any x 2 X and any a � 0

Then T is a contraction mapping.

Remark: these are sufficient conditions only, they are not necessary.
In applications, they are often quite easy to check.

24



Proof (sketch)
Let v, w 2 B(X). Then

v(x) = v(x) + w(x)� w(x)

 w(x) + |v(x)� w(x)|

 w(x) + kv � wk, for all x 2 X

Since T satisfies (i) and (ii) we have

Tv  T (w + kv � wk)  Tw + �kv � wk

Repeating this argument with the roles of v, w reversed

Tw  T (v + kv � wk)  Tv + �kv � wk
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Proof (sketch)

These last two inequalities imply

|Tv(x)� Tw(x)|  �kv � wk, for all x 2 X

Hence indeed

kTv � Twk  �kv � wk

So T is a contraction.
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Application to the growth model

Consider our usual Bellman operator:

Tv(k) ⌘ max
x

⇥
u(f(k)� x) + �v(x)

⇤

(i) Monotonicity. If v  w then

u(f(k)� x) + �v(x)  u(f(k)� x) + �w(x), for all x

so

max
x

⇥
u(f(k)� x) + �v(x)

⇤
 max

x

⇥
u(f(k)� x) + �w(x)

⇤

so

Tv(k)  Tw(k)

Hence T satisfies the monotonicity property.
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Application to the growth model

(ii) Discounting. For any a � 0 we have

T (v + a)(k) = max
x

⇥
u(f(k)� x) + �(v(x) + a)

⇤

= max
x

⇥
u(f(k)� x) + �v(x)

⇤
+ �a

= Tv(k) + �a

Hence T satisfies the discounting property.

Since (i) and (ii) are satisfied, T is a contraction.
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Next class

• This argument takes as granted that v 2 C(X) so that we may
apply the contraction mapping theorem

• What guarantees that v 2 C(X)?

• What else can we say about the value function? Is it increasing?
concave? differentiable?
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