
Macroeconomics
Lecture 3: dynamic programming methods, part one

Chris Edmond

1st Semester 2019

1

This class

• Introduction to deterministic dynamic programming

– recursive approach to the growth model

– key concepts: value function, Bellman equation etc

2

Sequence problem
• We are now familiar with the following sequence problem

max
{ct,kt+1}1t=0

1X

t=0

�t u(ct), 0 < � < 1

subject to the sequence of constraints,

ct � 0, and ct + kt+1  f(kt) + (1� �)kt

with the initial condition

k0 > 0 given

• Unless stated otherwise, assume u(c) and f(k) strictly increasing

and strictly concave

• To streamline notation, let � = 1 (equivalently, let f(kt) denote

total supply of goods at beginning of t) so that ct = f(kt)� kt+1

3

Value function

• Let v(k0) denote the maximized objective function

v(k0) ⌘ max
{kt+1}1t=0

1X

t=0

�t u(f(kt)� kt+1), 0 < � < 1

• This is known as a value function

• It is the value to the planner of being endowed with k0 > 0 and

then proceeding optimally

• Key to making this operationally useful is that the value function

has a simple recursive structure

4

Value function
• To see this recursive structure, let’s break the sum up

v(k0) ⌘ max
{kt+1}1t=0

1X

t=0

�t u(f(kt)� kt+1)

= max
{kt+1}1t=0

"
u(f(k0)� k1) + �

1X

t=1

�t�1 u(f(kt)� kt+1)

#

= max
k1

"
u(f(k0)� k1) + � max

{kt+1}1t=1

1X

t=1

�t�1 u(f(kt)� kt+1)

#

= max
k1

⇥
u(f(k0)� k1) + �v(k1)

⇤

5

Notational conventions
• We do not know the value function but we know it satisfies

v(k0) = max
k1

⇥
u(f(k0)� k1) + �v(k1)

⇤

• Nothing special about periods t = 0 and t = 1, we could write

v(kt) = max
kt+1

⇥
u(f(kt)� kt+1) + �v(kt+1)

⇤

• But for this stationary problem, there is nothing special about the

time periods at all, we may as well write

v(k) = max
x

⇥
u(f(k)� x) + �v(x)

⇤

where x is just a dummy variable indexing possible choices of next

period’s capital stock

• Current capital stock k is the sole state variable, a sufficient

statistic for past decisions

6

Bellman equation

• A recursive representation like

v(k) = max
x

⇥
u(f(k)� x) + �v(x)

⇤

is often called a Bellman equation, after Richard Bellman

• More generally, this is an example of a functional equation to be

solved for an unknown function, i.e., given exogenous u(c), f(k)
and � we need to solve for an endogenous function v(k)

• Much of economics (in macro and micro) involves solving problems

like this. We will spend the next few weeks learning how to do so

7

First order condition

• Consider the RHS of the Bellman equation. Treating v(x) as

known, this is just like a two-period problem

max
x

⇥
u(f(k)� x) + �v(x)

⇤

• And implies the first order condition

u0(f(k)� x) = �v0(x)

which we could imagine solving for some x = g(k). But we don’t

know v(x) and hence don’t know v0(x)

8

Aside on parameterized optimization problems

• Suppose we seek to maximize u(x, ✓) by choice of x given

parameter ✓

v(✓) ⌘ max
x

u(x, ✓)

• Let x = g(✓) achieve the maximum

g(✓) ⌘ argmax
x

u(x, ✓)

so that

v(✓) = u(g(✓), ✓)

• What do we know about v(✓)? What about v0(✓)?

9

Envelope theorem

• Suppose further that x = g(✓) is characterized by the first order

condition

@u(g(✓), ✓)

@x
= 0

• Then we have the envelope theorem

v0(✓) =
@u(g(✓), ✓)

@x
g0(✓) +

@u(g(✓), ✓)

@✓

=
@u(g(✓), ✓)

@✓

• The total derivative of the value function with respect to ✓ is given

by the partial derivative of the objective function with respect to ✓
evaluated at the optimum

10

Envelope condition

• Let’s apply this to our dynamic programming problem

v(k) = max
x

⇥
u(f(k)� x) + �v(x)

⇤

• Therefore

v0(k) =
@

@k

⇥
u(f(k)� x) + �v(x)

⇤
, x = g(k)

= u0(f(k)� x)f 0(k), x = g(k)

= u0(f(k)� g(k))f 0(k)

11

Policy function
• In dynamic programming problems like this, the function

g(k) ⌘ argmax
x

⇥
u(f(k)� x) + �v(x)

⇤

is known as the policy function or decision rule

• Iterating on the policy function gives the sequence of capital stocks

k1 = g(k0)

k2 = g(k1) = g(g(k0))

.

.

.

kt+1 = g(kt) = gt(k0)

• Properties of g(k) determine the properties of the optimal sequence

of kt. Steady states satisfy k⇤ = g(k⇤). A steady state is locally

stable if |g0(k⇤)| < 1, and so on

12

Policy function

• With the policy function g(k), can then recover consumption

c(k) = f(k)� g(k)

• To relate this back to our usual saddle-path phase diagram, this

c(k) is the stable-arm of the saddle-path

• Notice that this c(k) is the same as

c(k) ⌘ argmax
c

⇥
u(c) + �v(f(k)� c)

⇤

13

Combining first order and envelope conditions

• To summarize, we have the problem

v(k) = max
x

⇥
u(f(k)� x) + �v(x)

⇤

• The first order condition for this problem is

u0(f(k)� g(k)) = �v0(g(k))

• The envelope condition says

v0(k) = u0(f(k)� g(k))f 0(k)

• Evaluating this at g(k) gives the somewhat cumbersome

v0(g(k)) = u0(f(g(k))� g(g(k)))f 0(g(k))

14

Euler equation

• Hence we can write the Euler equation

u0(f(k)� g(k)) = �u0(f(g(k))� g(g(k)))f 0(g(k))

• This Euler equation can also be viewed as a functional equation, to

be solved for the policy function g(k)

• Using kt+1 = g(kt) and kt+2 = g(g(kt)) etc, in sequence notation

this is just the usual condition

u0(f(kt)� kt+1) = �u0(f(kt+1)� kt+2)f
0(kt+1)

15

Dynamical systems compared

• Policy function from the dynamic programming problem

kt+1 = g(kt), k0 > 0 given

This is a one-dimensional dynamical system in kt

• From the Euler equation

u0(f(kt)�kt+1) = �u0(f(kt+1)�kt+2)f
0(kt+1), k0 > 0 given

This is a two-dimensional dynamical system in kt

• Why the difference?

16

Bellman equations vs. Euler equations

• For a given problem, can either

(i) attempt to solve for value function v(k) from Bellman equation and
then determine policy function g(k), or

(ii) attempt to solve for policy function g(k) from Euler equation

• Solving Euler equations generally faster than solving Bellman

equations, so when problem is ‘well-behaved’ (ii) is often preferable

• Solving Bellman equations, while slower, is generally more robust

17

Method of successive approximations

• Suppose we had some candidate value function v0(k)

• Define a new value function by

v1(k) = max
x

⇥
u(f(k)� x) + �v0(x)

⇤

and test whether v1(k) equals v0(k) or not

• Unless we are lucky, v1(k) 6= v0(k). But suppose we keep iterating

vn+1(k) = max
x

⇥
u(f(k)� x) + �vn(x)

⇤
, n = 0, 1, . . .

• What happens to the sequence of functions vn as n ! 1?

18

A suboptimal policy

• Suppose we followed any feasible policy g0(k)

• Let v0(k) be the value of this generally suboptimal policy

v0(k0) =
1X

t=0

�t u(f(kt)� g0(kt))

such that, for arbitrary k,

v0(k) = u(f(k)� g0(k)) + �v0(g0(k))

19

A suboptimal policy

• Then we have

v1(k) = max
x

⇥
u(f(k)� x) + �v0(x)

⇤

�
⇥
u(f(k)� g0(k)) + �v0(g0(k))

⇤

= v0(k)

(can do no worse by choosing optimally today)

20

A suboptimal policy

• Likewise

v2(k) = max
x

⇥
u(f(k)� x) + �v1(x)

⇤

� max
x

⇥
u(f(k)� x) + �v0(x)

⇤

= v1(k)

• Continuing in this way, vn+1(k) � vn(k) for n = 0, 1, . . .

21

Bellman operator

• Let Tv denote the function created by the RHS of the Bellman

equation

Tv(k) ⌘ max
x

⇥
u(f(k)� x) + �v(x)

⇤

• T is an operator that takes as an input a function v and returns a

new function Tv

• In this notation

Tvn(k) ⌘ max
x

⇥
u(f(k)� x) + �vn(x)

⇤

• Can iterate on Bellman operator to get vn+1 = Tvn for n = 0, 1, . . .

22

Iterating on Bellman operator

• Notice that solving the Bellman equation is equivalent to solving

the fixed point problem

v = Tv

• We have seen that

vn+1 = Tvn � vn

• Does this increasing sequence vn converge to a limit v as n ! 1?

23

Next class

• Sketch of mathematical background

– contraction mapping theorem

– Blackwell’s sufficient conditions (for a contraction)

24

