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This class

• Review of neoclassical growth model

– production, not an endowment economy

– endogenous return on capital

– links capital accumulation with consumption/savings decisions
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Neoclassical growth model
• Discrete time t = 0, 1, 2, . . .

• Output Yt is produced with physical capital Kt and labor Lt

according to the aggregate production function

Yt = F (Kt, AtLt)

with labor-augmenting productivity At

• Physical capital depreciates at rate �

Kt+1 = (1 � �)Kt + It, 0 < � < 1, K0 > 0

• Goods may be either consumed or invested

Ct + It = Yt

• Gives the sequence of resource constraints, one for each date

Ct + Kt+1 = F (Kt, Lt) + (1 � �)Kt, K0 > 0
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Aggregate production function
• Each input has positive marginal product

FK(K, L) > 0, FL(K, L) > 0

• Each input suffers from diminishing returns

FKK(K, L) < 0, FLL(K, L) < 0

• Constant returns to scale, i.e., if both inputs scaled by common
factor c > 0 then

F (cK, cL) = cF (K, L)

• Some analysis is simplified by assuming the ‘Inada conditions’

FK(0, L) = FL(K, 0) = 1,

FK(1, L) = FL(K, 1) = 0

and that both inputs are essential, i.e., F (0, L) = F (K, 0) = 0
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Intensive form

• In efficiency units

y ⌘ Y

AL
, k ⌘ K

AL
, ... etc

• Using constant returns to scale

y =
Y

AL
=

F (K, AL)

AL
= F (

K

AL
, 1) = F (k, 1) ⌘ f(k)

• Intensive version of the production function

y = f(k), f 0(k) > 0, f 00(k) < 0,

and with Inada conditions

f 0(0) = 1, f 0(1) = 0
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Intensive form

• To streamline notation, suppose constant Lt = L and At = A

• Then intensive form of the resource constraint is simply

ct + kt+1 = f(kt) + (1 � �)kt, k0 > 0
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Social planner’s problem

• Social planner chooses stream ct � 0 to maximize

1X

t=0

�tu(ct)

subject to sequence of resource constraints

ct + kt+1 = f(kt) + (1 � �)kt, k0 > 0

• Infinite horizon keeps model ‘stationary’, no life-cycle effects

• Can be decentralized, focus on planner’s problem for simplicity
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Social planner’s problem

• Lagrangian with multiplier �t � 0 for each resource constraint

L =
1X

t=0

�tu(ct) +
1X

t=0

�t
⇥
f(kt) + (1 � �)kt � ct � kt+1

⇤

• Key first order conditions

ct : �tu0(ct) � �t = 0

kt+1 : ��t + �t+1
⇥
f 0(kt+1) + 1 � �

⇤
= 0

�t : f(kt) + (1 � �)kt � ct � kt+1 = 0

These hold at every date
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Consumption Euler equation
• Eliminating the Lagrange multipliers

u0(ct) = �u0(ct+1)
⇥
f 0(kt+1) + 1 � �

⇤

• Same as last class if we recognize that the ‘return on capital’ is

‘ Rt+1 = f 0(kt+1) + 1 � � ’

• Planner equates marginal rate of substitution (MRS) between t
and t + 1 with marginal rate of transformation (MRT)

– MRS between t and t + 1

u0(ct)

�u0(ct+1)

– MRT between t and t + 1

f 0(kt+1) + 1 � �
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Dynamical system

• Gives a system of two nonlinear difference equations in ct, kt

u0(ct) = �u0(ct+1)
⇥
f 0(kt+1) + 1 � �

⇤

and

ct + kt+1 = f(kt) + (1 � �)kt

• Two boundary conditions: (i) initial k0 > 0 given, and (ii) the
‘transversality condition ’

lim
T!1

�T u0(cT )kT+1 = 0

(analogous to kT+1 = 0 we would have in finite-horizon model)
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Steady state

• Steady state where �ct = 0 and �kt = 0. Let c⇤, k⇤ denote steady
state values. These are determined by

1 = �
⇥
f 0(k⇤) + 1 � �

⇤

and

c⇤ + k⇤ = f(k⇤) + (1 � �)k⇤

• Steady state Euler equation pins down k⇤, resource constraint then
determines c⇤, in particular

c⇤ = f(k⇤) � �k⇤
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Modified golden rule

• Let C(k) denote consumption sustained by holding kt fixed at k

C(k) ⌘ f(k) � �k

• C(k) is maximized at the ‘golden rule ’ level, where

f 0(k) = �

• Steady state capital stock determined by

f 0(k) = ⇢+ �, ⇢ ⌘ 1

�
� 1 > 0

where ⇢ > 0 is the pure rate of time preference

• Hence steady state capital is less than the golden rule level
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Qualitative dynamics

• Consumption dynamics

ct+1 > ct , kt+1 < k⇤

• Capital dynamics

kt+1 > kt , ct < C(kt)

• Divides kt, ct space into four regions. Flows can be analyzed with a
two-dimensional phase diagram
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Phase diagram in kt, ct space
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Determining c0

• Capital k0 is pre-determined (historically given) at date t = 0

• Consumption c0 not pre-determined, can ‘jump ’ within feasible set

0  c0  C(k0) + k0

• Consumption c0 jumps to ‘stable arm ’ of the dynamical system

• Initial consumption is the one degree of freedom that can be used
to avoid undesirable trajectories
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Stable arm
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Local dynamics

• Let x̂t denote the log-deviation of xt from its steady state value

x̂t ⌘ log
�xt

x⇤
�

⇡ xt � x⇤

x⇤

• Can show that local to steady state c⇤, k⇤ dynamics given by
0

@
ĉt+1

k̂t+1

1

A =

0

B@
1 � �f 00(k⇤)c⇤

�(c⇤)
f 00(k⇤)k⇤

�(c⇤)

� c⇤

k⇤
1
�

1

CA

0

@
ĉt

k̂t

1

A

where 1
�(c) is the intertemporal elasticity of substitution

1

�(c)
= � u0(c)

u00(c)c
> 0

• This coefficient matrix has one stable and one unstable root

17



Local dynamics

• Solution to this system has the form

k̂t+1 =  kk k̂t, and ĉt =  ck k̂t

where  kk is the stable root of the coefficient matrix and where  ck

is the slope of the stable arm

• In particular,  kk 2 (0, 1) is the stable root of the quadratic

 2
kk �

✓
1 � �f 00(k⇤)c⇤

�(c⇤)
+

1

�

◆
 kk +

1

�
= 0

and then

 ck =
⇣ 1

�
�  kk

⌘k⇤

c⇤
> 0
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Local dynamics
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Example: transition to steady state
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Initial capital k̂0 = �0.1 (i.e., 10% below steady state). Capital k̂t+1 =  kkk̂t and
consumption ĉt =  ckk̂t with  kk = 0.89 and  ck = 0.56.
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Next class

• Dynamic programming methods, part one

– recursive approach to the growth model
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