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This class

e Review of neoclassical growth model

— production, not an endowment economy
— endogenous return on capital

— links capital accumulation with consumption/savings decisions



Neoclassical growth model
Discrete time t = 0,1, 2, ...

Output Y; is produced with physical capital K; and labor L;
according to the aggregate production function

Y = F(Ky, AcLy)

with labor-augmenting productivity Ay

Physical capital depreciates at rate o0
Kiv1=(1-90)K; + I, 0<d<1, Ko >0
Goods may be either consumed or invested
Ci +1; =Y,
Gives the sequence of resource constraints, one for each date
Cy+ Kiy1 = F(Ky, Ly) + (1 — 0) Ky, Ko >0
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Aggregate production function

e LKach input has positive marginal product
Frx(K,L) >0, Fr(K,L) >0

e Each input suffers from diminishing returns
Frrg(K,L) <0, Fri(K,L) <0

e (onstant returns to scale, i.e., if both inputs scaled by common
tactor ¢ > 0 then

F(cK,cL)=cF(K,L)
e Some analysis is simplified by assuming the ‘Inada conditions’

Fr(0,L) = F1(K,0) = oo,
FK(OO,L) — FL(K, OO) =0

and that both inputs are essential, i.e., F(0,L) = F(K,0) =0
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Intensive form

e In efficiency units

ﬂ, kE ﬂ etc

Y K
Y .

e Using constant returns to scale

Y  F(K,AL) K

y:A—L: AL :F(Eal):F(kvl)E]p(k)

e Intensive version of the production function

y=fk), fk)>0,  [f'(k) <O,

and with Inada conditions

f'(0) =00,  f(00)=0



Intensive form

e To streamline notation, suppose constant L; = L and A; = A

e Then intensive form of the resource constraint is simply

ct + kev1 = f(ke) + (1 — 0)ky, ko >0



Social planner’s problem

e Social planner chooses stream ¢; > 0 to maximize

oo
t
E Bru(cy)
t=0
subject to sequence of resource constraints

ct + kip1 = f(ke) + (1 — &)k, ko >0

e Infinite horizon keeps model ‘stationary’, no life-cycle effects

e Can be decentralized, focus on planner’s problem for simplicity



Social planner’s problem

e Lagrangian with multiplier \; > 0 for each resource constraint

L= Bulee)+ > M[f(ke) + (1= 8kt — ¢t — ke
t=0 t=0

e Key first order conditions

Ct . 5tu’(ct) — )\t =0
k’t_|_1 . _)\t -+ )\t—l—l [f/(kt—I—l) + 1 — 5} =0
)\t . f(kt) -+ (1 — 5)kt — Ct — kt_|_1 =0

These hold at every date



Consumption Euler equation

e Eliminating the Lagrange multipliers

u'(e) = Bu'(crpr) [ f (keg1) +1 =6

e Same as last class if we recognize that the ‘return on capital’ is

‘Rip1 = fl(kig1) +1 -0’

e Planner equates marginal rate of substitution (MRS) between t
and t 4+ 1 with marginal rate of transformation (MRT)

— MRS between t and t + 1

u'(c)

Bu’(cty1)

— MRT between t and ¢t + 1

fikes1) +1-=6




Dynamical system

e (Gives a system of two nonlinear difference equations in ¢;, k¢

u'(cr) = Bu' (ce1) | f (k1) +1 = 0]

and

Ct —+ kt_|_1 — f(kt) + (1 — (5)]675

e Two boundary conditions: (i) initial kg > 0 given, and (ii) the
“transversality condition’

lim 8" (ep)krir =0
T—o00

(analogous to k711 = 0 we would have in finite-horizon model)
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Steady state

e Steady state where Ac; = 0 and Ak; = 0. Let ¢*, k* denote steady
state values. These are determined by

1= B[f (k) +1— 4]
and
&+ k= f(k) 4+ (1 =0k

e Steady state Euler equation pins down k*, resource constraint then
determines c*, in particular

& = (k) — ok
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Modified golden rule

Let C'(k) denote consumption sustained by holding k; fixed at k
C(k) = f(k) — ok
C'(k) is maximized at the ‘golden rule’ level, where

f'(k) =46

Steady state capital stock determined by
, 1
fllk)=p+4, p=--1>0
&
where p > 0 is the pure rate of time preference

Hence steady state capital is less than the golden rule level
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Qualitative dynamics

e Consumption dynamics

Ct41 > C & ki1 < k7
e (Capital dynamics

ki1 > ke & c: < C(ky)

e Divides ki, c; space into four regions. Flows can be analyzed with a
two-dimensional phase diagram
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consumption per worker, ¢

0

*

Phase diagram in k;, ¢; space

Ac =0
sustained consumption
““““““ B C(k) = f(k) — Sk
‘ > l
k*

capital per worker, k&
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Determining ¢

Capital kg is pre-determined (historically given) at date t = 0

Consumption ¢y not pre-determined, can ‘jump’ within feasible set
0 < cg < C(ko) + ko

Consumption cg jumps to ‘stable arm’ of the dynamical system

Initial consumption is the one degree of freedom that can be used
to avoid undesirable trajectories
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consumption per worker, ¢

Co

Stable arm

I Ac =0
stable arm
sustained consumption
““““““ C o) = f() — 5k
-/ p |
|
I l
1
o ko k*

capital per worker, k&
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Local dynamics

e Let z; denote the log-deviation of x; from its steady state value

Y
Y

. *
B =log (1) ~ ——~

e Can show that local to steady state c*, k* dynamics given by

N (%) e* 1 (*) fo* .
Ct+1 1 T 5f0.((c*)) f Cf(C*)) Ct
i e | b

where ﬁ is the intertemporal elasticity of substitution

1 u'(c)

olc)  u'(c)e

> ()

e This coeflicient matrix has one stable and one unstable root
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Local dynamics

e Solution to this system has the form

Fir1 = Vik ke, and Ct = Ve ki

where ;1. is the stable root of the coefficient matrix and where 9.
is the slope of the stable arm

e In particular, ¥ € (0,1) is the stable root of the quadratic

o [, Bf(K)c 1) 1
Vick (1 () + 5 Vrk + 3 =0
and then
Yok, = (% —%k)g >0
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Local dynamics

stable arm
ét — wck kt




Example: transition to steady state
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Initial capital ]ACO = —OA.l (i.e., 10% below steady state). Capital l%t+1 = gbkk/%t and
consumption ¢; = Y ke with Yrr = 0.89 and ., = 0.56.
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Next class

e Dynamic programming methods, part one

— recursive approach to the growth model
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