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This class

• Krusell-Smith (1998)

– heterogeneous agent production economy

– aggregate risk

– time-varying wealth distribution, high-dimensional state variable

– approximate aggregation

2



Firms

• Representative firm with production function

Yt = ztF (Kt, Nt) = ztK
↵
t N

1�↵
t , 0 < ↵ < 1

• Aggregate productivity zt follows a 2-state Markov chain with

⇡(z0 | z) = Prob[zt+1 = z
0 | zt = z]

• Unlike Aiyagari model, factor prices will not be constant

rt = ↵zt

✓
Kt

Nt

◆↵�1

and

wt = (1� ↵)zt

✓
Kt

Nt

◆↵
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Households

• Continuum i 2 [0, 1] of heterogeneous households, maximize

E
( 1X

t=0

�
t
u(cit)

)
, 0 < � < 1

subject to the budget constraints

cit + kit+1  rtkit + wtnit + (1� �)kit

where rt denotes the rental rate of capital

• Also face the constraint

kit+1 � 0

(no short-selling capital)
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Idiosyncratic risk

• Idiosyncratic labor endowment risk

nit 2 {nl, nh}

with nit = nl (unemployed) or nit = nh (employed)

• Law of large numbers : let ⇡(n | z) denote the population fraction of
individuals with n if aggregate state is z

• Idiosyncratic risk is correlated with the aggregate state. Probability
of being unemployed is greater when aggregate productivity is low
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Idiosyncratic risk

• Joint transition probability

⇡(n0
, z

0 |n, z) = Prob[nt+1 = n
0
, zt+1 = z

0 |nt = n, zt = z]

(4⇥ 4 since each of n0 |n and z
0 | z is 2⇥ 2)

• Consistency requires the adding-up conditions

⇡(z0 | z) =
X

n0

⇡(n0
, z

0 |n, z), for all n

and

⇡(n0 | z0) =
X

n

⇡(n0
, z

0 |n, z)
⇡(z0 | z) ⇡(n | z)
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State variables

• Individual state variables

kit , nit

• Aggregate state variables

zt , µt(kit, nit)

where µt(kit, nit) denotes the time-t joint distribution of capital
and labor across households

• Unlike the Aiyagari model, distribution evolves over time. For
now, write this as

µt+1 = Ht(µt, zt+1)

(depends on zt+1 since fraction of individuals with nt+1 = n

depends on zt+1)
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Dynamic programming problem

• Bellman equation for an agent of type k, n given z, µ

v(k, n ; z, µ) = max
k0 � 0

h
u(c)+�

X

n0

X

z0

v(k0, n0 ; z0, µ0)⇡(n0
, z

0 |n, z)
i

subject to

c+ k
0  r(z, µ)k + w(z, µ)n+ (1� �)k

and the law of motion for the distribution µ

µ
0 = H(µ, z, z0)

• Let k
0 = g(k, n ; z, µ) denote the policy function implied by the

maximization on the RHS of the Bellman equation

• Notice that z, µ matter for individual problem only through factor
pricing functions r(z, µ) and w(z, µ)
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Recursive competitive equilibrium

• A recursive competitive equilibrium is a value function v(k, n; z, µ),
policy function g(k, n; z, µ), pricing functions r(z, µ), w(z, µ), and
law of motion for the distribution H(µ, z, z0) such that

(i) taking r(z, µ), w(z, µ) as given, v(k, n; z, µ) and g(k, n; z, µ) solve
the dynamic programming problem for an agent of type k, n

(ii) r(z, µ), w(z, µ) solve the firm’s profit maximization problem

r(z, µ) = ↵z

✓
K

N

◆↵�1

w(z, µ) = (1� ↵)z

✓
K

N

◆↵
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Recursive competitive equilibrium

(iii) markets clear

K =
X

k

X

n

kµ(k, n)

N =
X

k

X

n

nµ(k, n)

(iv) the law of motion H(µ, z, z0) is generated by the policy function
k
0 = g(k, n; z, µ) and the exogenous Markov chain ⇡(n0

, z
0 |n, z)
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Why do we need to keep track of the distribution?

• Household savings decisions depend on return on capital

• Return on capital depends on rental rate next period

r(z0, µ0) = ↵z
0
✓
K

0

N 0

◆↵�1

where

K
0 =

X

k

X

n

k
0
µ
0(k, n) =

X

k

X

n

g(k, n, z, µ)µ0(k, n)

• In principle, whole distribution µ
0 matters for K

0

• Note N
0 is essentially exogenous, determined by z

0 alone
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Computational strategy

• Approximate wealth distribution with finite vector of moments m
(mean, variance, skewness, kurtosis, etc)

• The wealth distribution is the distribution µ after n has been
marginalized out

• Write the law of motion for this vector of moments

m0 = Ĥ(m, z, z
0)

• In practice, Krusell-Smith focus on the case where only the first
moment is used

logK 0 = az + bz logK

(aggregate K is the first moment of the wealth distribution)
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Approximate problem

• Bellman equation for an agent of type k, n given z,K

v(k, n ; z,K) = max
k0 � 0

h
u(c)+�

X

n0

X

z0

v(k0, n0 ; z0,K 0)⇡(n0
, z

0 |n, z)
i

subject to

c+ k
0  r(z,K)k + w(z,K)n+ (1� �)k

and the law of motion

logK 0 = az + bz logK

• Dependence on µ has been replaced by single number K

• Coefficients az, bz for each z, to be determined
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Solution algorithm

• Start with initial guess at coefficients for law of motion a
0
z, b

0
z

• Solve individual’s problem for v
0(k, n ; z,K) and g

0(k, n ; z,K)

• Use exogenous Markov chain, law of motion, and individual
decision rules to simulate a panel of capital stocks kit and let

Kt =
1

I

IX

i=1

kit

• For each z, run the regression

logKt+1 = a
1
z + b

1
z logKt + "t+1

on the simulated aggregate capital stock data
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Solution algorithm

• Check if
��(a0z, b0z)� (a1z, b

1
z)
�� is less than some pre-specified

tolerance. If so, stop. If not, update to a new guess and try again

• If the coefficients in the law of motion have converged, then the
perceived law of motion is approximately consistent with the
actual law of motion generated by aggregating individual decisions
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Refinement

• Calculate
��(a0z, b0z)� (a1z, b

1
z)
�� and calculate R

2 in the regression

logKt+1 = a
1
z + b

1
z logKt + "t+1

If (a0z, b0z) ⇡ (a1z, b
1
z) and R

2 in regression is high, stop. Otherwise,
update to a new guess and try again

• If coefficients (a0z, b
0
z) ⇡ (a1z, b

1
z) but R

2 remains low, add more
moments to perceived law of motion

• See Den Haan (2010 JEDC) for discussion of computational
strategies for this kind of model
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Krusell-Smith example

• Four periods per year
• Time discount factor � = 0.961/4 = 0.99 per period
• Log utility (CRRA = 1)
• Capital share ↵ = 0.36

• Depreciation rate � = 0.025 per period
• Aggregate state

z 2 {zl , zh} = {0.99 , 1.01}

with symmetric transition matrix

⇡(z0 | z) =
✓

0.875 0.125
0.125 0.875

◆

(so expected duration of each state is 8 quarters)
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Krusell-Smith example

• Idiosyncratic state

n 2 {0.25 , 1}

(unemployed have 25% the income of employed)

• Transition probabilities

⇡(n0
, z

0 |n, z) = ⇡(n0 | z0, n, z)⇡(z0 | z)

• Have already specified 2⇥ 2 transitions ⇡(z0 | z)

• Need to specify ⇡(n0 | z0, n, z) for each of 2⇥ 2⇥ 2 = 8 combinations
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Transition probabilities

• Expansion: average unemployment spell 1.5 quarters

⇡(n0 = nl | z0 = zh , n = nl , z = zh ) = 1/3

⇡(n0 = nh | z0 = zh , n = nl , z = zh ) = 2/3

(i.e., 1/(1� (1/3)) = 1.5 quarters)

• Recession: average unemployment spell 2.5 quarters

⇡(n0 = nl | z0 = zl , n = nl , z = zl ) = 0.6

⇡(n0 = nh | z0 = zl , n = nl , z = zl ) = 0.4

(i.e., 1/(1� (0.6)) = 2.5 quarters)
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Transition probabilities

• Switch from z = zh to z
0 = zl, higher prob remain unemployed

⇡(n0 = nl | z0 = zl , n = nl , z = zh ) = 0.75

⇡(n0 = nh | z0 = zl , n = nl , z = zh ) = 0.25

• Switch from z = zl to z
0 = zh, lower prob remain unemployed

⇡(n0 = nl | z0 = zh , n = nl , z = zl ) = 0.25

⇡(n0 = nh | z0 = zh , n = nl , z = zl ) = 0.75

• Key idea: best time to find job is when economy is expanding
(from recession to boom), worst time is when economy is
contracting (from boom to recession)
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Aggregate consistency

• Fraction of households unemployed conditional on z

⇡(nl | zl) = 0.10, ⇡(nl | zh) = 0.04

(10% unemployed in recession, 4% unemployed in boom)

• Finally consistency requires

⇡(n0 | z0) =
X

n

⇡(n0
, z

0 |n, z)
⇡(z0 | z) ⇡(n | z)

to pin down all the elements of the 4⇥ 4 transition matrix

21



Quasi-aggregation result

• Law of motion in approximate equilibrium

z = zh : logK 0 = 0.095 + 0.0962 logK, R
2 = 0.999998

z = zl : logK 0 = 0.085 + 0.0965 logK, R
2 = 0.999998

• Standard deviation of the regression residuals

z = zh : �̂h = 0.0028%

z = zl : �̂h = 0.0036%

• The first moment alone does an extremely good job
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Discussion

• Adding extra moments would in principle improve forecasts

• But improvement in forecasting performance would be minuscule

• With mean alone, forecasts are very accurate. Even 25 years out,
errors only on order of 0.1%

• Utility cost of neglecting higher moments is negligible
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Aggregate decision rules
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Individual decision rules
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Why is there quasi-aggregation?

• Individual decision rules nearly linear in wealth (capital)

• If they were exactly linear, would get exact aggregation

• There are nonlinearities here, but only for very poor households
who don’t hold much capital

• Most of the wealth is held by households with a high buffer-stock
of savings who all react in the same way to an aggregate shock
(same �, same r)
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Wealth inequality
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Stochastic � model

• Extension with time-varying discount factors

• Three values

�1 = 0.9858, �2 = 0.9894, �3 = 0.9930

• Long-run distribution putting 80% of population in middle
category and 10% in each extreme

• This version of the model leads to much more wealth inequality
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Wealth inequality
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Aggregate fluctuations
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Next class

• Hopenhayn (1992)

– heterogenous firms

– steady-state model with endogenous entry and exit
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