Macroeconomics

Lecture 17: incomplete markets, part three

Chris Edmond

1st Semester 2019

This class

- Aiyagari (1994)
 - production economy with capital and labor (heterogeneous agents version of stochastic growth model)
 - but still no aggregate risk

Firms

• Representative firm with production function

$$Y_t = F(K_t, N_t) = K_t^{\alpha} N_t^{1-\alpha}, \qquad 0 < \alpha < 1$$

• Takes as given rental rate \tilde{r}_t and wage rate w_t

$$\tilde{r}_t = F_{K,t} = \alpha \left(\frac{K_t}{N_t}\right)^{\alpha - 1}$$
$$w_t = F_{N,t} = (1 - \alpha) \left(\frac{K_t}{N_t}\right)^{\alpha}$$

• Aggregate capital evolves according to

$$K_{t+1} = (1 - \delta)K_t + I_t, \qquad 0 < \delta < 1$$

• In equilibrium

$$\tilde{r}_t = r_t + \delta$$

where r_t is the real risk-free return on household savings

Households

• Continuum $i \in [0, 1]$ of heterogeneous households, maximize

$$\mathbb{E}\left\{\sum_{t=0}^{\infty}\beta^{t}u(c_{it})\right\}, \qquad 0 < \beta < 1$$

subject to the budget constraints

$$c_{it} + a_{it+1} \le (1 + r_t)a_{it} + w_t n_{it}$$

where r_t is the real risk-free return on their savings

• Also face the borrowing constraint

$$a_{it+1} \ge -\phi$$

(for some parameter ϕ , to be discussed below)

Labor income risk

- For each individual i, the labor endowment n_{it} follows an exogenous AR(1) process
- Labor endowment n_{it} follows an exogenous AR(1) process

$$\log n_{it+1} = (1-\rho)\log \bar{n} + \rho\log n_{it} + \varepsilon_{it+1}, \qquad 0 < \rho < 1$$

where the innovations ε_{it} are IID over time and across individuals

$$\varepsilon_{it} \sim \text{IID } N(0, \sigma^2)$$

• All the cross-sectional properties of labor income $w_t n_{it}$ come from the exogenous component n_{it}

Markov chain representation

• To simplify the exposition, suppose labor endowment process n_{it} has been approximated by a Markov chain with

 $\pi(n' \,|\, n) = \operatorname{Prob}[n_{it+1} = n' \,|\, n_{it} = n]$

- Let $\pi(n)$ denote the stationary distribution implied by this chain
- Let $\mu_t(a_{it}, n_{it})$ denote the joint distribution of assets and labor endowments. As in the Huggett model, this is endogenous

Stationary equilibrium

- We again focus on a stationary (steady-state) equilibrium
- In such an equilibrium

- aggregate variables are constant

 $w, r, N, K, \mu(a, n), \pi(n)$

- but individual-level variables are not constant

 c_{it}, n_{it}, a_{it}

• By contrast with the Huggett model, there is a physical store of value (capital), i.e., aggregate assets are not in zero net supply

Stationary equilibrium

• In such an equilibrium, aggregate labor is simply

$$N = \sum_{n} n \, \pi(n)$$

which is essentially exogenous

• We also have the basic relationships

$$r + \delta = \alpha \left(\frac{K}{N}\right)^{\alpha - 1} \quad \Leftrightarrow \quad K = \left(\frac{\alpha}{r + \delta}\right)^{\frac{1}{1 - \alpha}} N \equiv K(r)$$

and

$$w = (1 - \alpha) \left(\frac{K}{N}\right)^{\alpha} = (1 - \alpha) \left(\frac{\alpha}{r + \delta}\right)^{\frac{\alpha}{1 - \alpha}} \equiv w(r)$$

Dynamic programming problem

• Bellman equation for an agent of type a, n given r

$$v(a, n; r) = \max_{a' \ge -\phi} \left[u(c) + \beta \sum_{n'} v(a', n'; r) \pi(n' | n) \right]$$

subject to

$$c + a' \le (1+r)a + w(r)n$$

- Let a' = g(a, n; r) denote the policy function implied by the maximization on the RHS of the Bellman equation
- Note that r is constant and that given r individuals do not need to know either K or $\mu(\cdot)$ to solve their problem
- This would not be true if aggregate state was changing (why?)

Stationary equilibrium

- A stationary equilibrium is a value function v(a, n), policy function g(a, n), distribution $\mu(a, n)$, price r, and capital stock K such that:
 - (i) taking r as given, v(a, n) and g(a, n) solve the dynamic programming problem for an agent of type a, n
 - (ii) taking r as given, K solves the firm's profit maximization problem

$$K = \left(\frac{\alpha}{r+\delta}\right)^{\frac{1}{1-\alpha}} N$$

(iii) the asset market clears

$$K = \sum_{a} \sum_{n} g(a, n) \mu(a, n)$$

(iv) the distribution $\mu(a, n)$ is stationary

$$\mu(a',n') = \sum_{a} \sum_{n} \operatorname{Prob}[a',n' \mid a,n] \, \mu(a,n)$$

where the conditional distribution ${\rm Prob}[a',n'\,|\,a,n]$ is given by a'=g(a,n) and $\pi(n'\,|\,n)$

Market clearing

• At the equilibrium r, net asset demand equals supply

$$K = \sum_{a} \sum_{n} g(a, n) \mu(a, n)$$

• Assets are in *positive net supply*

- those with a' > 0 are saving at rate r
- those with a' < 0 are borrowing at r

Unlike the Huggett model, there is a physical store of value and in aggregate there will be more saving than there is borrowing

• If the asset market clears, we also have goods market clearing

$$C \equiv \sum_{a} \sum_{n} c(a, n) \mu(a, n), \qquad C + \delta K = K^{\alpha} N^{1 - \alpha}$$

where c(a, n) denotes the consumption policy implied by g(a, n)and $I = \delta K$ is steady state investment

Solution algorithm

- Start with an initial guess r^0 , implies $K(r^0)$ and $w(r^0)$ (given N)
- Solve individual's problem for $v(a, n; r^0)$ and $g(a, n; r^0)$ given r^0
- Solve for the stationary distribution $\mu(a, n; r^0)$ implied by $g(a, n; r^0)$ and the exogenous $\pi(n' \mid n)$
- Compute the error on the market-clearing condition

$$\left\|\sum_{a}\sum_{n}g(a,n\,;\,r^{0})\mu(a,n\,;\,r^{0})-K(r^{0})\right\|$$

If this error is less than some pre-specified *tolerance* $\varepsilon > 0$, stop. Otherwise update to r^1 and try again

Updating the return

• We are trying to find r such that the asset market clears

• If for any r^j (for j = 0, 1, 2, ...) we have

$$\sum_a \sum_n g(a,n\,;\,r^j) \mu(a,n\,;\,r^j) > K(r^j)$$

then there is excess savings and so we should decrease the return, updating to some $r^{j+1} < r^j$

• Likewise if for any r^j we have

$$\sum_{a} \sum_{n} g(a,n\,;\,r^j) \mu(a,n\,;\,r^j) < K(r^j)$$

then there is *excess borrowing* and so we should increase the return, updating to some $r^{j+1} < r^j$

Aiyagari's parameterization

- One period per year
- Time discount factor $\beta = 0.96$ per period
- Cobb-Douglas production function with $\alpha = 0.36$
- CRRA u(c) with risk aversion $\{1, 3, 5\}$
- Seven-state Markov chain chosen to replicate AR(1) with innovation standard deviation $\sigma \in \{0.2, 0.4\}$ and persistence $\rho \in \{0, 0.3, 0.6, 0.9\}$
- Benchmark has borrowing constraint $\phi = 0$

Main results

A. Net return to capital in %/aggregate saving rate in % ($\sigma = 0.2$)

ρ\μ	1	3	5
0	4.1666/23.67	4.1456/23.71	4.0858/23.83
0.3	4.1365/23.73	4.0432/23.91	3.9054/24.19
0.6	4.0912/23.82	3.8767/24.25	3.5857/24.86
0.9	3.9305/24.14	3.2903/25.51	2.5260/27.36
Net re	turn to capital in %/aggrega	te saving rate in % (σ =	0.4)
ρ\μ	1	3	5
0	4.0649/23.87	3.7816/24.44	3.4177/25.22
0.3	3.9554/24.09	3.4188/25.22	2.8032/26.66
0.6	3.7567/24.50	2.7835/26.71	1.8070/29.37
0.9	3.3054/25.47	1.2894/31.00	-0.3456/37.63
	 ρ\μ 0 0.3 0.6 0.9 Net re ρ\μ 0 0.3 0.6 0.9 	$\rho \setminus \mu$ 104.1666/23.670.34.1365/23.730.64.0912/23.820.93.9305/24.14Net return to capital in %/aggregat $\rho \setminus \mu$ 104.0649/23.870.33.9554/24.090.63.7567/24.500.93.3054/25.47	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$

Special case with IID risk

• Suppose $\pi(n')$ is independent of n and let

$$\hat{a} \equiv a + \phi$$

(so that $a \ge -\phi$ is equivalent to $\hat{a} \ge 0$)

• Let z denote beginning of period 'cash on hand'

$$z \equiv w(r)n + (1+r)\hat{a} - r\phi$$

so that budget constraint can be written

$$c + \hat{a}' \le z$$

• For this IID case, dynamic programming is in terms of z only

Special case with IID risk

• Bellman equation for an agent of type z given r

$$v(z; r) = \max_{\hat{a}' \ge 0} \left[u(c) + \beta \sum_{n'} v(z'; r) \pi(n' | n) \right]$$

subject to

$$c + \hat{a}' \le z, \qquad z' = w(r)n' + (1+r)\hat{a}' - r\phi$$

• Let $\hat{a}' = g(z; r)$ denote the policy function implied by the maximization on the RHS of the Bellman equation

Consumption and assets

Dynamics of total resources z_t

Asset market clearing

Next class

- Krusell-Smith (1998)
 - incomplete markets with aggregate risk
 - i.e., business cycle fluctuations