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This class

e Solving the Huggett (1993) model
e A simple 2-state Markov example

e Approximating continuous-state processes using Markov chains
(the Tauchen-Hussey (1991) procedure)



Discrete state space approximation

e Consider discrete grid of asset levels
Amin < ... < a; < ... < Gmax 1=1,...,n

where an,in 1S the borrowing constraint

e Suppose endowment process is a Markov chain with support
Ymin < ..+ < Y < ... < Ymax kIl,...,m

and transition probabilities

Tk = Probly’ =y |y = v



Discrete state space approximation

e Given price g, let c;;; denote current consumption if current asset
level is a = a;, the asset level for next period is a’ = a; and the
current endowment is yy

Cijk = Qi T Yk — qa;

e We will need to be careful to respect the feasibility constraints
Amin < A < g '(a; + i)

e Let u;;;, denote the flow utility associated with ¢;;

wijk = uw(Cijk)



Discrete state space approximation

e In this notation, our value function is an n X m matrix V with
typical element

m
Uik = mjaX [uijk + E Ujlﬁkl}
=1

e The maximization on the RHS implies a policy function, i.e., an
n X m matrix GG with typical element

m
-
gik, = Qj*, J = argmax [uz’jk + 0 E Ujlﬂkl}
J =1



State vector

e Endowment process y; follows an exogenous Markov chain
Prob(yt+1 | yt]

e State s; = (ay,y;) follows an endogenous Markov chain
Prob[si11 = | s¢]

e Need to calculate transition probabilities for this Markov chain



Transition probabilities for the state vector

e Write the transition probabilities for the state

Problai+1, yi+1 | at, Yt

e But the distribution of ;11 is independent of a;1; so this is
Problas11 | at, yt) X Problyii1 | yi]

e But a;y1 is given by the optimal policy az+1 = g(a¢, y¢) so
Problas11 | at, yt) = L|ai+1 = g(as, yt)]

where 1[-] denotes the indicator function



Transition probabilities for the state vector

e Hence

PI’Ob[CLH_l, Yi+1 | ag, yt] — ]]-[aft—l—l — g(at, yt)] X PrOb[yt—l—l ‘yt]

e So once we have computed the policy function g(a,y) we can also
compute these transition probabilities

e In this sense, the Markov process for the state s; = (a¢, y¢) is a
coupling of the exogenous process for y; with the policy function



Huggett:

2-state example

Uses Matlab files in “huggett example.zip” in LMS

= 0.500;
= 0.925;

economic parameters

CRRA

time discount factor

(=1/IES)

2—state markov chain for endowments

0
=1
[

.1;
.0;
ymin; ymax] ;

pl2 =
p2l =

[pll,pl2;p21,p22];

1 - pll;
1 - p22;




Asset grid

na
amin
amax

agrid

asset grid

(ymin/ (1-beta) ) —eps;

= 1000;
= —-phi;
= 12;

= nodeunif (na

4

amin,

%% borrowing constraint

amax) ;
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State vector

o\°
o\°

ns

o\°
o\°

state grid

gridmake (agrid, ygrid) ;
size(s,1);

o

=

[¢]

ns—by-2 matrix where ns=nax*ny

11




Inner dynamic programming loop

$%%%% 1nitilalize 1nner dynamic programmling loop
v = 1log(0.5%y)/ (1-beta);
iter = 0;

for i=1l:max_iter,

RHS = utbetaxkron (P,ones(na, 1)) xreshape(v,na,2)"';
[Tv,argmax] = max (RHS, [],2);

$%%%% policy that attains the maximum

g = a(argmax) ;

Kronecker product calculates conditional expectation of value function
next period
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Transition matrix for the state

$%%%% construct transition matrix for the state s=(a,y)
A = zeros(ns,na);

QO = zeros(ns,ns);

PP = kron (P,ones(na,l1l));

for s=1:ns,

>
(0))]
~

I

(agrid==g(s))'; %% puts a 1 1f gl(s)=a
Q(s,:) = kron(PP(s,:),A(s,:));

end

This is fiddly
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Compute stationary distribution

$%%%% compute stationary distribution
[eig_vectors,eig_values] = eig(Q"');
[~,arg] = min (abs(diag(eig_values)-1));

unit_eig vector = eig_vectors (:,arqg);

mu = unit_eig vector/sum(unit_eig_vector);

Be careful to check the orientation of the transition matrix
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Check market clearing

$%%%% check market clearing

z = sum(mu.x*qg);
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Find ¢ that solves F(q) =0

$%%%% find g that zeros out market-clearing condition
gmin = betateps;

gmax = 1 —eps;

$fmin = findg(gmin,parameters,max_iter,penalty,tol);
$fmax = findg(gmax,parameters,max_iter,penalty,tol);

optset ('bisect', 'tol',tol) ;

tic

g = bisect ('findg',gmin, gmax,parameters,max_1iter,penalty,tol);
toc
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excess demand for bonds, F(q)

Excess demand F'(q)

0.96 0.97 0.98 0.99 1
bond price, g
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Asset policy d' = g(a,y)

3. rcvm =D ‘Aorjod josse

asset level, a
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Consumption policy c(a,y)
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Marginal asset distribution ) u(a,y)
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Tauchen/Hussey (1991) approximation

Can use quadrature to obtain discrete Markov chain
approximation to process with continuous support

Density for x;41 = 2’ conditional on x; = x

p(x' | x)

Discretize support of x to n quadrature nodes x; and replace
p(x’| ) by n X n matrix of transition probabilities

where w; are quadrature weights for x; and w(x) is a ‘regularity
function’ that controls the quality of the approximation to higher
moments
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Tauchen/Hussey (1991) example

e Suppose we want to approximate AR(1) with Markov chain

p(z’|x) = %b (:C/ — (L =p)7 — p:r:)

o

e Lookup quadrature nodes x;, weights w; for normal N (u, 62).
Set regularity function to

w(x):é <x;az>

e Tauchen/Hussey (1991) advocate 6 = o (innovation std dev).
But Floden (2008) advocates that for highly persistent processes

6 =060+ (1—-0)0, 0=1/2 + p/4
(p ~ 1 = more weight in tails, better match conditional variance)
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Tauchen-Hussey example

Uses Matlab files in “tauchen hussey example.zip” in LMS

$%%%% AR1l process
phi = 0.95; %% ARl coefficient
sigeps = 0.10; %% innovation std deviation

% long run moments
mu = 0;
sigma = sigeps/sqgrt (l-phi*2);
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Tauchen-Hussey example

%$%%% discrete-state approximation to ARI1

N = 33;
floden = 1;

number of nodes
indicator for Floden correction

[nodes, weights,P] = get_tauchen_hussey (mu, sigeps,phi,N, floden);
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Tauchen-Hussey example

Inside the function file

$%%%% INDICATOR FOR FLODEN CORRECTION

if floden==1,

W = 0.5 + phi/4;

sigx = sigeps/sgrt (1-phi”2); %% unconditional std dev
flodensigma = wx*xsigeps + (l1-w)*xsigx;

else

flodensigma = si1geps;

end

$%%%% LOOKUP QUADRATURE NODES AND WEIGHTS
[nodes,weights] = gnwnorm (N, mu, flodensigma”2);

25




Tauchen-Hussey example

$%%%% CONSTRUCT TRANSITION MATRIX
$pl[iJ] = flijl+quadrature_weight (J)/reqgularity_function (j)

$%%%% conditional mean
mean = (1l-phi)*mu + phixnodes(1);

$%%%% given we are at node (i), what is likelihood of node(j)?
F(i,]) = normpdf (nodes (]J),mean, si1geps) ;

$%%%% multiply by quadrature weilghts
P(1,3) = F(1,]J)rweights(3]);

$%%%% divide by regularity_function
regularity_function (j) = normpdf (nodes (]),mu, flodensigma) ;

P(i,Jj) = P(i,3)/regularity_function(3j);

26




Tauchen-Hussey example

0.0 0 O O

$%%%% normalize so rows sum to 1
for i=1:N,

P(j-r:) :P(ir:) /sum(P(i,:),Z);

end
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Markov chain vs. AR1 with same moments

0.8

0.6 -

——

—_—

M‘MWMM

1
100

time

28

1
200




Next class

e Aiyagari (1994)

— production economy with capital and labor
(heterogeneous agents version of stochastic growth model)

— but still no aggregate risk
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