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This class

• Solving the Huggett (1993) model

• A simple 2-state Markov example

• Approximating continuous-state processes using Markov chains

(the Tauchen-Hussey (1991) procedure)

2



Discrete state space approximation

• Consider discrete grid of asset levels

amin < . . . < ai < . . . < amax i = 1, ..., n

where amin is the borrowing constraint

• Suppose endowment process is a Markov chain with support

ymin < . . . < yk < . . . < ymax k = 1, ...,m

and transition probabilities

⇡kl = Prob[y0 = yl | y = yk]
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Discrete state space approximation

• Given price q, let cijk denote current consumption if current asset

level is a = ai, the asset level for next period is a0 = aj and the

current endowment is yk

cijk = ai + yk � qaj

• We will need to be careful to respect the feasibility constraints

amin  aj  q�1(ai + yk)

• Let uijk denote the flow utility associated with cij

uijk = u(cijk)
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Discrete state space approximation

• In this notation, our value function is an n⇥m matrix V with

typical element

vik = max
j

h
uijk + �

mX

l=1

vjl⇡kl
i

• The maximization on the RHS implies a policy function, i.e., an

n⇥m matrix G with typical element

gik = aj⇤ , j⇤ = argmax
j

h
uijk + �

mX

l=1

vjl⇡kl
i
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State vector

• Endowment process yt follows an exogenous Markov chain

Prob[yt+1 | yt]

• State st = (at, yt) follows an endogenous Markov chain

Prob[st+1 = | st]

• Need to calculate transition probabilities for this Markov chain
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Transition probabilities for the state vector

• Write the transition probabilities for the state

Prob[at+1, yt+1 | at, yt]

• But the distribution of yt+1 is independent of at+1 so this is

Prob[at+1 | at, yt]⇥ Prob[yt+1 | yt]

• But at+1 is given by the optimal policy at+1 = g(at, yt) so

Prob[at+1 | at, yt] = [at+1 = g(at, yt)]

where [·] denotes the indicator function
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Transition probabilities for the state vector

• Hence

Prob[at+1, yt+1 | at, yt] = [at+1 = g(at, yt)]⇥ Prob[yt+1 | yt]

• So once we have computed the policy function g(a, y) we can also

compute these transition probabilities

• In this sense, the Markov process for the state st = (at, yt) is a

coupling of the exogenous process for yt with the policy function
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Huggett: 2-state example

Uses Matlab files in “huggett_example.zip ” in LMS

%%%%% economic parameters

beta = 0.95; %% time discount factor
alpha = 1.5; %% CRRA (=1/IES)

%%%%% 2-state markov chain for endowments

ymin = 0.1;
ymax = 1.0;
ygrid = [ymin;ymax];

p11 = 0.500; p12 = 1 - p11;
p22 = 0.925; p21 = 1 - p22;

P = [p11,p12;p21,p22];
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Asset grid

%%%%% asset grid

phi = (ymin/(1-beta))-eps; %% borrowing constraint

na = 1000;
amin = -phi;
amax = 12;

agrid = nodeunif(na , amin, amax);
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State vector

%%%% state grid

s = gridmake(agrid,ygrid); % ns-by-2 matrix where ns=na*ny
ns = size(s,1);

a = s(:,1);
y = s(:,2);
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Inner dynamic programming loop

%%%%% initialize inner dynamic programming loop

v = log(0.5*y)/(1-beta);
iter = 0;

for i=1:max_iter,

RHS = u+beta*kron(P,ones(na,1))*reshape(v,na,2)';

[Tv,argmax] = max(RHS,[],2);

%%%%% policy that attains the maximum

g = a(argmax);

Kronecker product calculates conditional expectation of value function

next period
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Transition matrix for the state

%%%%% construct transition matrix for the state s=(a,y)

A = zeros(ns,na);
Q = zeros(ns,ns);

PP = kron(P,ones(na,1));

for s=1:ns,

A(s,:) = (agrid==g(s))'; %% puts a 1 if g(s)=a

Q(s,:) = kron(PP(s,:),A(s,:));

end

This is fiddly
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Compute stationary distribution

%%%%% compute stationary distribution

[eig_vectors,eig_values] = eig(Q');
[~,arg] = min(abs(diag(eig_values)-1));
unit_eig_vector = eig_vectors(:,arg);

mu = unit_eig_vector/sum(unit_eig_vector);

Be careful to check the orientation of the transition matrix
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Check market clearing

%%%%% check market clearing

z = sum(mu.*g);
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Find q that solves F (q) = 0

%%%%% find q that zeros out market-clearing condition

qmin = beta+eps;
qmax = 1 -eps;

%fmin = findq(qmin,parameters,max_iter,penalty,tol);
%fmax = findq(qmax,parameters,max_iter,penalty,tol);

optset('bisect','tol',tol) ;
tic
q = bisect('findq',qmin,qmax,parameters,max_iter,penalty,tol);
toc
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Excess demand F (q)
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Asset policy a0 = g(a, y)
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Consumption policy c(a, y)
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Marginal asset distribution
P

y µ(a, y)
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Tauchen/Hussey (1991) approximation

• Can use quadrature to obtain discrete Markov chain

approximation to process with continuous support

• Density for xt+1 = x0 conditional on xt = x

p(x0 |x)

• Discretize support of x to n quadrature nodes xi and replace

p(x0 |x) by n⇥ n matrix of transition probabilities

pij =
p(xj |xi) wj

!(xj)Pn
j0=1 p(xj0 |xi)

wj0
!(xj0 )

, i, j = 1, ..., n

where wi are quadrature weights for xi and !(x) is a ‘regularity

function’ that controls the quality of the approximation to higher

moments
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Tauchen/Hussey (1991) example

• Suppose we want to approximate AR(1) with Markov chain

p(x0 |x) = 1

�
�

✓
x0 � (1� ⇢)x̄� ⇢x

�

◆

• Lookup quadrature nodes xi, weights wi for normal N(µ, �̂2).
Set regularity function to

!(x) =
1

�̂
�

✓
x� x̄

�̂

◆

• Tauchen/Hussey (1991) advocate �̂ = � (innovation std dev).

But Floden (2008) advocates that for highly persistent processes

�̂ = ✓� + (1� ✓)�̄, ✓ = 1/2 + ⇢/4

(⇢ ⇡ 1 ) more weight in tails, better match conditional variance)
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Tauchen-Hussey example

Uses Matlab files in “tauchen_hussey_example.zip ” in LMS

%%%%% AR1 process

phi = 0.95; %% AR1 coefficient
sigeps = 0.10; %% innovation std deviation

% long run moments
mu = 0;
sigma = sigeps/sqrt(1-phi^2);
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Tauchen-Hussey example

%%%% discrete-state approximation to AR1

N = 33; %% number of nodes
floden = 1; %% indicator for Floden correction

[nodes,weights,P] = get_tauchen_hussey(mu,sigeps,phi,N,floden);
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Tauchen-Hussey example

Inside the function file

%%%%% INDICATOR FOR FLODEN CORRECTION
if floden==1,

w = 0.5 + phi/4;
sigx = sigeps/sqrt(1-phi^2); %% unconditional std dev

flodensigma = w*sigeps + (1-w)*sigx;

else

flodensigma = sigeps;

end

%%%%% LOOKUP QUADRATURE NODES AND WEIGHTS
[nodes,weights] = qnwnorm(N,mu,flodensigma^2);
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Tauchen-Hussey example

%%%%% CONSTRUCT TRANSITION MATRIX
%p[ij] = f[ij]*quadrature_weight(j)/regularity_function(j)

for i=1:N,
for j=1:N,

%%%%% conditional mean
mean = (1-phi)*mu + phi*nodes(i);

%%%%% given we are at node(i), what is likelihood of node(j)?
F(i,j) = normpdf(nodes(j),mean,sigeps);

%%%%% multiply by quadrature weights
P(i,j) = F(i,j)*weights(j);

%%%%% divide by regularity_function
regularity_function(j) = normpdf(nodes(j),mu,flodensigma);

P(i,j) = P(i,j)/regularity_function(j);
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Tauchen-Hussey example

%%%%% normalize so rows sum to 1
for i=1:N,

P(i,:) = P(i,:) / sum(P(i,:),2);

end
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Markov chain vs. AR1 with same moments
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Next class

• Aiyagari (1994)

– production economy with capital and labor
(heterogeneous agents version of stochastic growth model)

– but still no aggregate risk
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