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This class

• Introduction to incomplete markets

• Huggett (1993)

– endowment economy

– idiosyncratic risk but no aggregate risk

– implications for borrowing, saving, and interest rates
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Setup

• Time t = 0, 1, 2, . . .

• Continuum i 2 [0, 1] of heterogeneous agents

• Idiosyncratic endowment risk

⇡(y0 | y) = Prob[yit+1 = y0 | yit = y]

• Aggregate endowment constant, Y
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Riskless bond

• Extreme form of market incompleteness, just a single riskless bond

• Let qt denote the price at which bond can be bought or sold

• Let ait+1 denote agent i’s end-of-period asset holdings

– ait+1 < 0 is borrowing (selling bond),
get qt at t, pay 1 unit of consumption at t+ 1

– ait+1 > 0 is saving (buying bond),
pay qt at t, get 1 unit of consumption at t+ 1

• Agents will acquire a buffer-stock of savings in an attempt to
self-insure against their idiosyncratic risk
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Borrowing constraint

• If current yit is particularly low, may borrow to keep cit smooth

• Such borrowing is limited by a constraint

ait � a, a  0

• For this model we take a to be an exogenous parameter
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Aggregate state

• There are two key endogenous variables

(i) the price qt of the riskless bond

(ii) the cross-sectional (joint) distribution of types

µt(a, y) = Prob[ait = a , yit = y]

• The aggregate state of the economy is the distribution (function)
µt(·) and in principle this distribution changes over time

• We will study a simpler problem where distribution is not changing
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Stationary equilibrium

• In particular, we focus on a stationary (steady-state) equilibrium

• In such an equilibrium

– aggregate variables are constant

q , µ(·)

– but individual-level variables are not constant

cit , yit , ait

• An initial distribution µ0(a, y) 6= µ(a, y) would induce transitional
dynamics, but we focus on the ‘long run’ where such transitional
dynamics of the distribution have played out
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Dynamic programming problem

• Bellman equation for an agent of type a, y given q

v(a, y ; q) = max
a0 � a

h
u(c) + �

X

y0

v(a0, y0 ; q)⇡(y0 | y)
i

subject to

c+ qa0  a+ y

• Let a0 = g(a, y ; q) denote the policy function implied by the
maximization on the RHS of the Bellman equation

• Note that q is constant and that individuals do not need to know
µ(·) to solve their problem
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Stationary equilibrium

• A stationary equilibrium is a value function v(a, y), policy function
g(a, y), distribution µ(a, y) and price q such that:

(i) taking q as given, v(a, y) and g(a, y) solve the dynamic
programming problem for an agent of type a, y

(ii) the asset market clears
X

a

X

y

g(a, y)µ(a, y) = 0

(iii) the distribution µ(a, y) is stationary

µ(a0, y0) =
X

a

X

y

Prob[a0, y0 | a, y]µ(a, y)

where the conditional distribution Prob[a0, y0 | a, y] is given by
a0 = g(a, y) and ⇡(y0 | y)

9



Market clearing

• At the equilibrium price, demand equals supply
X

a

X

y

g(a, y)µ(a, y) = 0

• Assets are in zero net supply

– those with a0 > 0 are on the demand side, buying the asset at price q
– those with a0 < 0 are on the supply side, selling the asset at price q

• If the asset market clears, we also have goods market clearing
X

a

X

y

c(a, y)µ(a, y) =
X

a

X

y

yµ(a, y) ⌘ Y

where c(a, y) denotes the consumption policy implied by g(a, y)
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Borrowing constraint

• Let � � 0 denote the Lagrange multiplier on the borrowing
constraint a0 � a

• The Lagrangian for the RHS of the Bellman equation can be
written

L = u(a+ y � qa0) + �
X

y0

v(a0, y0 ; q)⇡(y0 | y) + �(a0 � a)

• The first order condition with respect to a0 is then

�qu1(c)+�
X

y0

v1(a
0, y0 ; q)⇡(y0 | y)+�  0, with = if a0 > a

while the envelope condition is, as usual,

v1(a, y) = u1(c)
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Complementary slackness

• Equivalently

qu1(c)� �
X

y0

u1(c
0)⇡(y0 | y) � � � 0

where � and c, c0 are evaluated at the optimum

• Either (i) the borrowing constraint is slack (a0 > a and � = 0) and
we have the usual kind of consumption Euler equation

qu1(c) = �
X

y0

u1(c
0)⇡(y0 | y)

or (ii) the borrowing constraint binds (a0 = a and � > 0) so that we
have the Euler inequality

qu1(c) > �
X

y0

u1(c
0)⇡(y0 | y)
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Solution algorithm

• Start with an initial guess q0

• Solve individual’s problem for v(a, y ; q0) and g(a, y ; q0) given q0

• Solve for the stationary distribution µ(a, y ; q0) implied by
g(a, y ; q0) and the exogenous ⇡(y0 | y)

• Compute the error on the market-clearing condition
���
X

a

X

y

g(a, y ; q0)µ(a, y ; q0)
���

If this error is less than some pre-specified tolerance " > 0, stop.
Otherwise update to q1 and try again
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Updating the price

• We are trying to find q such that the asset market clears

• If for any qn (for n = 0, 1, 2, . . . ) we have
X

a

X

y

g(a, y ; qn)µ(a, y ; qn) > 0

then there is excess demand and so we should increase the price,
updating to some qn+1 > qn

• Likewise if for any qn we have
X

a

X

y

g(a, y ; qn)µ(a, y ; qn) < 0

then there is excess supply and so we should decrease the price,
updating to some qn+1 < qn
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Inner and outer problems

• Think of this whole procedure as a mapping of the form

q ! F (q) = 0

with

v(· ; q) = Tv(· ; q)

• We have an inner problem, namely the individual agent’s dynamic
programming problem v(· ; q) = Tv(· ; q)

• And an outer problem, namely finding the market clearing price q
given individual optimality
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Stationary equilibrium

• In this stationary equilibrium, individual outcomes cit, ait are
stochastic processes induced by Markov process for yit, namely

ait+1 = g(ait, yit)

and

cit = c(ait, yit) ⌘ ait + yit � qg(ait, yit)

• While individual outcomes fluctuate over time, the cross-sectional
distribution of them does not

• Cross-sectional distribution equivalent to the time-series
distribution of individual outcomes
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Huggett’s example

• Six periods per year

• Time discount factor � = 0.961/6 = 0.993 per period

• CRRA u(c) with various ↵

• Two-state Markov chain with yH = 1, yL = 0.1 and transition
probabilities

⇡HH ⌘ ⇡(yH | yH) = 0.925

⇡LL ⌘ ⇡(yL | yL) = 0.500

Implies average duration L state is two periods (⇡ 17 weeks)

• Solve on a grid of a 2 {a, . . . } for various a. Benchmark a = �5.3
(approximately 1 year’s average endowment)
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Asset policy a0 = g(a, y)
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Consumption policy c(a, y)
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Excess demand F (q) =
P

a

P
y g(a, y ; q)µ(a, y ; q)
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Complete markets benchmark

• Complete risk-sharing

cit = Y

• Implies bond price

q = �

• Assets then follow

ait+1 = (1 + r)(ait + yit � Y )

where r = 1/q � 1 denotes the risk-free rate
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Low risk aversion, ↵ = 1.5

• Risk-free rate r in annual percent, for various a

a r q
�2 �7.1% 1.0124
�4 2.3% 0.9962
�6 3.4% 0.9944
�8 4.0% 0.9935

• As borrowing constraint becomes tight (higher a) there is high
demand for saving, pushes up equilibrium q and pushes down r

• As borrowing constraint becomes slack (lower a), there is more
borrowing, pushes down equilibrium q and pushes up r

• Approach complete market case q ⇡ � if a low enough
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Higher risk aversion, ↵ = 3

• Risk-free rate r in annual percent, for various a

a r q
�2 �23.0% 1.0448
�4 �2.6% 1.0045
�6 1.8% 0.9970
�8 3.7% 0.9940

• Higher risk aversion ↵ reduces r for all a

• Higher risk aversion plus tight borrowing constraints leads to
massive demand for saving and hence very low interest rates
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Next class

• Solving the Huggett model

– further computational details

– solving consumption/savings problems with borrowing constraints

– solving the general equilibrium problem
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