Macroeconomics

Lecture 15: incomplete markets, part one

Chris Edmond

1st Semester 2019

This class

- Introduction to incomplete markets
- Huggett (1993)
 - endowment economy
 - idiosyncratic risk but no aggregate risk
 - implications for borrowing, saving, and interest rates

Setup

- Time t = 0, 1, 2, ...
- Continuum $i \in [0, 1]$ of heterogeneous agents
- Idiosyncratic endowment risk

$$\pi(y' | y) = \operatorname{Prob}[y_{it+1} = y' | y_{it} = y]$$

• Aggregate endowment constant, Y

Riskless bond

- Extreme form of market incompleteness, just a single riskless bond
- Let q_t denote the price at which bond can be bought or sold
- Let a_{it+1} denote agent *i*'s end-of-period asset holdings
 - $a_{it+1} < 0 \text{ is borrowing (selling bond)}, \\ \text{get } q_t \text{ at } t, \text{ pay 1 unit of consumption at } t+1$
 - $a_{it+1} > 0$ is saving (buying bond), pay q_t at t, get 1 unit of consumption at t+1
- Agents will acquire a *buffer-stock* of savings in an attempt to *self-insure* against their idiosyncratic risk

Borrowing constraint

- If current y_{it} is particularly low, may borrow to keep c_{it} smooth
- Such borrowing is limited by a constraint

$$a_{it} \ge \underline{a}, \qquad \underline{a} \le 0$$

• For this model we take \underline{a} to be an exogenous parameter

Aggregate state

- There are two key endogenous variables
 - (i) the price q_t of the riskless bond
 - (ii) the cross-sectional (joint) distribution of types

 $\mu_t(a, y) = \operatorname{Prob}[a_{it} = a, y_{it} = y]$

- The aggregate state of the economy is the distribution (function) $\mu_t(\cdot)$ and in principle this distribution changes over time
- We will study a simpler problem where distribution is not changing

Stationary equilibrium

- In particular, we focus on a stationary (steady-state) equilibrium
- In such an equilibrium
 - aggregate variables are constant

 $q\,,\,\mu(\cdot)$

- but individual-level variables are not constant
 - c_{it} , y_{it} , a_{it}
- An *initial distribution* $\mu_0(a, y) \neq \mu(a, y)$ would induce transitional dynamics, but we focus on the 'long run' where such transitional dynamics of the distribution have played out

Dynamic programming problem

• Bellman equation for an agent of type a, y given q

$$v(a, y; q) = \max_{a' \ge \underline{a}} \left[u(c) + \beta \sum_{y'} v(a', y'; q) \, \pi(y' \,|\, y) \right]$$

subject to

$$c + qa' \le a + y$$

- Let a' = g(a, y; q) denote the policy function implied by the maximization on the RHS of the Bellman equation
- Note that q is constant and that individuals do not need to know $\mu(\cdot)$ to solve their problem

Stationary equilibrium

- A stationary equilibrium is a value function v(a, y), policy function g(a, y), distribution $\mu(a, y)$ and price q such that:
 - (i) taking q as given, v(a, y) and g(a, y) solve the dynamic programming problem for an agent of type a, y
 - (ii) the asset market clears

$$\sum_{a} \sum_{y} g(a, y) \mu(a, y) = 0$$

(iii) the distribution $\mu(a, y)$ is stationary

$$\mu(a', y') = \sum_{a} \sum_{y} \operatorname{Prob}[a', y' \mid a, y] \, \mu(a, y)$$

where the conditional distribution $\operatorname{Prob}[a', y' \mid a, y]$ is given by a' = g(a, y) and $\pi(y' \mid y)$

Market clearing

• At the equilibrium price, demand equals supply

$$\sum_{a} \sum_{y} g(a, y) \mu(a, y) = 0$$

• Assets are in zero net supply

- those with a' > 0 are on the demand side, buying the asset at price q- those with a' < 0 are on the supply side, selling the asset at price q

• If the asset market clears, we also have goods market clearing

$$\sum_{a} \sum_{y} c(a, y) \mu(a, y) = \sum_{a} \sum_{y} y \mu(a, y) \equiv Y$$

where c(a, y) denotes the consumption policy implied by g(a, y)

Borrowing constraint

- Let $\lambda \ge 0$ denote the Lagrange multiplier on the borrowing constraint $a' \ge \underline{a}$
- The Lagrangian for the RHS of the Bellman equation can be written

$$L = u(a + y - qa') + \beta \sum_{y'} v(a', y'; q) \pi(y' | y) + \lambda(a' - \underline{a})$$

• The first order condition with respect to a' is then

$$-qu_1(c) + \beta \sum_{y'} v_1(a', y'; q) \pi(y' \mid y) + \lambda \le 0, \quad \text{with} = \text{if } a' > \underline{a}$$

while the envelope condition is, as usual,

$$v_1(a,y) = u_1(c)$$

Complementary slackness

• Equivalently

$$qu_1(c) - \beta \sum_{y'} u_1(c') \pi(y' \mid y) \ge \lambda \ge 0$$

where λ and c, c' are evaluated at the optimum

• Either (i) the borrowing constraint is $slack (a' > \underline{a} \text{ and } \lambda = 0)$ and we have the usual kind of consumption Euler equation

$$qu_1(c) = \beta \sum_{y'} u_1(c') \,\pi(y' \,|\, y)$$

or (ii) the borrowing constraint binds $(a' = \underline{a} \text{ and } \lambda > 0)$ so that we have the Euler inequality

$$qu_1(c) > \beta \sum_{y'} u_1(c') \pi(y' \mid y)$$

Solution algorithm

- Start with an initial guess q^0
- Solve individual's problem for $v(a, y; q^0)$ and $g(a, y; q^0)$ given q^0
- Solve for the stationary distribution $\mu(a, y; q^0)$ implied by $g(a, y; q^0)$ and the exogenous $\pi(y' | y)$
- Compute the error on the market-clearing condition

$$\left\|\sum_{a}\sum_{y}g(a,y\,;\,q^{0})\mu(a,y\,;\,q^{0})\right\|$$

If this error is less than some pre-specified *tolerance* $\varepsilon > 0$, stop. Otherwise update to q^1 and try again

Updating the price

• We are trying to find q such that the asset market clears

• If for any
$$q^n$$
 (for $n = 0, 1, 2, ...$) we have

$$\sum_{a} \sum_{y} g(a, y; q^n) \mu(a, y; q^n) > 0$$

then there is excess demand and so we should increase the price, updating to some $q^{n+1} > q^n$

• Likewise if for any q^n we have

$$\sum_{a} \sum_{y} g(a, y; q^n) \mu(a, y; q^n) < 0$$

then there is excess supply and so we should decrease the price, updating to some $q^{n+1} < q^n$

Inner and outer problems

• Think of this whole procedure as a mapping of the form

$$q \to F(q) = 0$$

with

 $v(\cdot\,;\,q) = Tv(\cdot\,;\,q)$

- We have an *inner problem*, namely the individual agent's dynamic programming problem $v(\cdot; q) = Tv(\cdot; q)$
- And an *outer problem*, namely finding the market clearing price q given individual optimality

Stationary equilibrium

• In this stationary equilibrium, individual outcomes c_{it} , a_{it} are stochastic processes induced by Markov process for y_{it} , namely

$$a_{it+1} = g(a_{it}, y_{it})$$

and

$$c_{it} = c(a_{it}, y_{it}) \equiv a_{it} + y_{it} - qg(a_{it}, y_{it})$$

- While individual outcomes fluctuate over time, the cross-sectional distribution of them does not
- Cross-sectional distribution equivalent to the time-series distribution of individual outcomes

Huggett's example

- Six periods per year
- Time discount factor $\beta = 0.96^{1/6} = 0.993$ per period
- CRRA u(c) with various α
- Two-state Markov chain with $y_H = 1, y_L = 0.1$ and transition probabilities

 $\pi_{HH} \equiv \pi(y_H \mid y_H) = 0.925$ $\pi_{LL} \equiv \pi(y_L \mid y_L) = 0.500$

Implies average duration L state is two periods (≈ 17 weeks)

• Solve on a grid of $a \in \{\underline{a}, ...\}$ for various \underline{a} . Benchmark $\underline{a} = -5.3$ (approximately 1 year's average endowment)

Asset policy
$$a' = g(a, y)$$

Consumption policy c(a, y)

Excess demand
$$F(q) = \sum_{a} \sum_{y} g(a, y; q) \mu(a, y; q)$$

Complete markets benchmark

• Complete risk-sharing

$$c_{it} = Y$$

• Implies bond price

$$q = \beta$$

• Assets then follow

$$a_{it+1} = (1+r)(a_{it} + y_{it} - Y)$$

where r = 1/q - 1 denotes the risk-free rate

Low risk aversion, $\alpha = 1.5$

• Risk-free rate r in annual percent, for various \underline{a}

\underline{a}	r	q
-2	-7.1%	1.0124
-4	2.3%	0.9962
-6	3.4%	0.9944
-8	4.0%	0.9935

- As borrowing constraint becomes tight (higher \underline{a}) there is high demand for saving, pushes up equilibrium q and pushes down r
- As borrowing constraint becomes slack (lower \underline{a}), there is more borrowing, pushes down equilibrium q and pushes up r
- Approach complete market case $q \approx \beta$ if <u>a</u> low enough

Higher risk aversion, $\alpha = 3$

• Risk-free rate r in annual percent, for various \underline{a}

<u>a</u>	r	q
-2	-23.0%	1.0448
-4	-2.6%	1.0045
-6	1.8%	0.9970
-8	3.7%	0.9940

- Higher risk aversion α reduces r for all \underline{a}
- Higher risk aversion plus tight borrowing constraints leads to massive demand for saving and hence very low interest rates

Next class

- Solving the Huggett model
 - further computational details
 - solving consumption/savings problems with borrowing constraints
 - solving the general equilibrium problem