Macroeconomics

Lecture 13: complete markets, part one

Chris Edmond

1st Semester 2019

This class

- Introduction to complete markets general equilibrium
 - time-zero vs. sequential trading arrangements
 - planning allocation vs. equilibrium allocation
 - we do this in a *pure endowment* setting

Setup

- Time t = 0, 1, 2, ...
- Events $s_t \in S$
- Histories $s^t = (s_0, s_1, \dots, s_t) = (s^{t-1}, s_t)$
- Unconditional probabilities of histories $\pi_t(s^t)$, need not be Markov

Endowments and feasible allocations

- Individuals $i = 1, 2, \ldots, I$
- Individual endowments $y_t^i(s^t)$
- Individual consumption allocations $c_t^i(s^t)$
- Feasible allocations satisfy the resource constraint

$$\sum_{i} c_t^i(s^t) \le \sum_{i} y_t^i(s^t), \quad \text{all } t, s^t$$

• The RHS of this is the *aggregate endowment*

$$Y_t(s^t) \equiv \sum_i y_t^i(s^t)$$

• Let $c^i \equiv \{c^i_t(s^t)\}_{t=0}^\infty$ and $y^i \equiv \{y^i_t(s^t)\}_{t=0}^\infty$

Preferences

• Individuals rank outcomes using the expected utility criterion

$$U(c^{i}) \equiv \sum_{t=0}^{\infty} \sum_{s^{t}} \beta^{t} u(c_{t}^{i}(s^{t})) \pi_{t}(s^{t})$$

- Thus individuals have
 - heterogeneous endowments y^i
 - but *identical utility function* $U(\cdot)$ (in particular, they agree on $\pi_t(s^t)$ and have same $u(\cdot), \beta$)
 - we will relax some of this in coming classes
- As usual, we assume u'(c) > 0, u''(c) < 0 and $u'(0) = +\infty$

Alternative trading arrangements

(1) ARROW-DEBREU (time-zero) approach:

Single enormous market at time t = 0, in which there is trade in a complete set of contingent claims for all possible histories s^t

At subsequent periods, $t = 1, 2, \ldots$, agreed-upon trades are carried out but no further trading occurs

Alternative trading arrangements

(2) RADNER (sequence of markets) approach:

At each time t = 0, 1, 2, ... and history s^t there is a market in which there is trade in a *complete set of contingent claims* for all possible nodes $s^{t+1} = (s^t, s_{t+1})$ that immediately follow s^t

In other words, there is the possibility of dynamic trading, contingent on the realized history s^t

Discussion

- Roughly speaking, the Arrow-Debreu time-zero approach has many more assets but many fewer trading dates than Radner sequence-of-markets approach
- Perhaps confusingly, the one-period-ahead contingent claims in the sequence-of-markets approach are known as *Arrow securities*
- It turns out that these two approaches yield identical allocations

- Consider the problem of a benevolent social planner
- Planner chooses c^i for i = 1, ..., I to maximize the welfare criterion

$$W = \sum_{i} \lambda_i U(c^i)$$

where $\lambda_i \geq 0$ for i = 1, ..., I are a set of nonnegative Pareto weights

• Planner takes as given the resource constraints

$$\sum_{i} c_t^i(s^t) \le \sum_{i} y_t^i(s^t), \quad \text{for all } t, s^t$$

- A solution to this problem is *Pareto efficient* i.e., no individual can be made better off without another being made worse off
- By varying the vector of $\boldsymbol{\lambda}$ we can trace out the set of Pareto efficient allocations

• Lagrangian with stochastic multiplier $\theta_t(s^t) \ge 0$ for each constraint

$$\mathcal{L} = \sum_{i} \lambda_{i} \sum_{t=0}^{\infty} \sum_{s^{t}} \beta^{t} u(c_{t}^{i}(s^{t})) \pi_{t}(s^{t})$$
$$+ \sum_{t=0}^{\infty} \sum_{s^{t}} \theta_{t}(s^{t}) \sum_{i} \left[y_{t}^{i}(s^{t}) - c_{t}^{i}(s^{t}) \right]$$

• This can be written more compactly as

$$\mathcal{L} = \sum_{i} \sum_{t=0}^{\infty} \sum_{s^t} \left\{ \lambda_i \beta^t u(c_t^i(s^t)) \pi_t(s^t) + \theta_t(s^t) \left[y_t^i(s^t) - c_t^i(s^t) \right] \right\}$$

which reveals that, from the planner's point of view, this is really a sequence of static problems (why?)

• First order conditions for $c_t^i(s^t)$ are

$$\lambda_i \beta^t u'(c_t^i(s^t)) \pi_t(s^t) = \theta_t(s^t), \quad \text{for all } i, t, s^t$$

• Hence taking the ratio of these for individual i and individual 1

$$\frac{\lambda_i}{\lambda_1} \frac{u'(c_t^i(s^t))}{u'(c_t^1(s^t))} = 1$$

• We can invert this to write $c_t^i(s^t)$ in terms of $c_t^1(s^t)$, namely

$$c_t^i(s^t) = u'^{-1} \left(\frac{\lambda_1}{\lambda_i} \, u'(c_t^1(s^t)) \right)$$

• We can plug this into the resource constraint to get

$$\sum_{i} u'^{-1} \left(\frac{\lambda_1}{\lambda_i} u'(c_t^1(s^t)) \right) = Y_t(s^t), \quad \text{for all } t, s^t$$

- This is a single nonlinear equation in $c_t^1(s^t)$ that we can solve
- Once we have found $c_t^1(s^t)$ can then recover $c_t^i(s^t)$ for all other i

Properties of the solution

• Solutions have the form

 $c_t^i = f(\lambda_i, Y_t; \boldsymbol{\lambda})$

- Time-invariant function $f(\cdot)$
- Distribution-free, cross-sectional distribution of endowments y_t^i realized at t does not matter, only aggregate Y_t matters
- *History-free*, current Y_t is a sufficient statistic for whole history
- Parameterized by vector $\boldsymbol{\lambda}$ of exogenous Pareto weights and $u'(\cdot)$

Arrow-Debreu (time-zero) approach

- Let $q_t^0(s^t)$ denote the price at date t = 0 of a claim to one unit of consumption for delivery at t, s^t (superscript 0 refers to date of trade, subscript t refers to date trade is carried out)
- Taking prices $q_t^0(s^t)$ as given, individuals choose consumption plans $c_t^i(s^t)$ to maximize

$$U(c^{i}) \equiv \sum_{t=0}^{\infty} \sum_{s^{t}} \beta^{t} u(c_{t}^{i}(s^{t})) \pi_{t}(s^{t})$$

subject to the single budget constraint

$$\sum_{t=0}^{\infty} \sum_{s^t} q_t^0(s^t) c_t^i(s^t) \le \sum_{t=0}^{\infty} \sum_{s^t} q_t^0(s^t) y_t^i(s^t)$$

• RHS is the time-zero value of their future endowments, i.e., their *initial wealth*. The LHS is the time-zero value of consumption

Equilibrium concept

- A price system is a sequence of functions $q = \{q_t^0(s^t)\}_{t=0}^{\infty}$. An allocation is a collection of sequences of functions $c^i = \{c_t^i(s^t)\}_{t=0}^{\infty}$
- A competitive equilibrium is a price system q and a feasible allocation c^i such that, taking q as given, the allocation c^i solves each individual's problem

• Lagrangian with single multiplier $\mu_i \ge 0$ on budget constraint

$$\mathcal{L} = \sum_{t=0}^{\infty} \sum_{s^t} \beta^t u(c_t^i(s^t)) \pi_t(s^t)$$
$$+ \mu_i \sum_{t=0}^{\infty} \sum_{s^t} q_t^0(s^t) \left[y_t^i(s^t) - c_t^i(s^t) \right]$$

• Again, this can be written more compactly as

$$\mathcal{L} = \sum_{t=0}^{\infty} \sum_{s^t} \left\{ \beta^t u(c_t^i(s^t)) \pi_t(s^t) + \mu_i \, q_t^0(s^t) \left[y_t^i(s^t) - c_t^i(s^t) \right] \right\}$$

• First order conditions for $c_t^i(s^t)$ are

$$\beta^t \, u'(c_t^i(s^t)) \, \pi_t(s^t) = \mu_i \, q_t^0(s^t), \qquad \text{for all } t, s^t$$

(implies a demand curve for c_t^i in terms of μ_i , prices $q_t^0(s^t)$ etc)

• To find the equilibrium allocation, begin by taking the ratio of these for individual i and individual 1

$$\frac{u'(c_t^i(s^t))}{u'(c_t^1(s^t))} = \frac{\mu_i}{\mu_1}$$

• We can invert this to write $c_t^i(s^t)$ in terms of $c_t^1(s^t)$, namely

$$c_t^i(s^t) = u'^{-1} \left(\frac{\mu_i}{\mu_1} \, u'(c_t^1(s^t)) \right)$$

• For this to be an equilibrium allocation it must be feasible

$$\sum_{i} u'^{-1} \left(\frac{\mu_i}{\mu_1} \, u'(c_t^1(s^t)) \right) = Y_t(s^t)$$

This is a single nonlinear equation in $c_t^1(s^t)$ that we can solve

• Once we have found $c_t^1(s^t)$ can then recover $c_t^i(s^t)$ for all other *i*. This gives

 $c_t^i = g(\mu_i, Y_t; \boldsymbol{\mu})$

- Again a time-invariant function, history matters only through realization of aggregate endowment Y_t etc
- But this is *not* a solution to the general equilibrium problem

- Still need to solve for the vector of multipliers μ
- For each individual *i*, evaluate the budget constraint at $c_t^i = g(\mu_i, Y_t; \boldsymbol{\mu})$ to get

$$\sum_{t=0}^{\infty} \sum_{s^t} q_t^0(s^t) g(\mu_i, Y_t; \boldsymbol{\mu}) = \sum_{t=0}^{\infty} \sum_{s^t} q_t^0(s^t) y_t^i(s^t), \quad \text{all } i$$

- Represents a system of I nonlinear equations in I unknowns μ_i . Since μ_i enters $g(\cdot)$ in form μ_i/μ_1 can multiply all μ_i by a constant without changing anything (i.e., can choose a normalization)
- Multipliers μ_i depend on cross-sectional distribution of wealth (which is endogenous). A *fixed point problem*

Equilibrium computation (sketch)

Versions of the following procedure are often used:

- 1. Fix μ_1 . Guess a value for the remaining μ_i . Use these guesses to compute a tentative $c_t^i = g(\mu_i, Y_t; \boldsymbol{\mu})$
- **2.** Recover the price system from

$$q_t^0(s^t) = \beta^t \, \frac{u'(g(\mu_i, Y_t; \boldsymbol{\mu}))}{\mu_i} \, \pi_t(s^t)$$

(can use any i, say i = 1)

- **3.** Given these $q_t^0(s^t)$, solve system of budget constraints for new μ_i
- 4. Iterate on steps 1-3 until the μ_i converge

This is known as the Negishi algorithm

Equilibrium and planning allocations

- If it turns out that $\mu_i = 1/\lambda_i$ then the equilibrium allocation coincides with the planning allocation (corresponding to λ)
- Put differently, there is a set of planning solutions indexed by the configuration of λ and the competitive equilibrium *picks out one particular* solution, the one for which the planner has $\lambda_i = 1/\mu_i$
- Since μ_i will typically be inversely related to individual *i*'s wealth, this is akin to saying the competitive equilibrium picks out the solution for which the planner gives high weight to wealthy individuals and low weight to poor individuals
- At these weights, the planner's multipliers (i.e., shadow prices) $\theta_t(s^t)$ coincide with the equilibrium prices $q_t^0(s^t)$

Equilibrium and planning allocations

- In a competitive equilibrium, the multipliers μ_i are endogenous and determined by the distribution of endowments $y^i = \{y_t^i(s^t)\}$ both directly and indirectly via the equilibrium prices q
- Different configurations of y^i imply different configurations of μ_i and hence different allocations
- Put differently, if we have some desired outcome $c^i = \{c_t^i(s^t)\}$ in mind then we could try to find the configuration of $y^i \to \mu_i$ that would deliver c^i as an equilibrium outcome
- In other words, we can obtain other equilibrium allocations by an appropriate redistribution of wealth

Welfare theorems

- This connection between the equilibrium and planning allocations reflects the two "fundamental theorems of welfare economics"
- That the equilibrium allocation corresponds to the solution of *a* planning problem is a version of the *first welfare theorem*, that competitive equilibrium allocations are Pareto efficient
- That we can obtain other equilibrium allocations by an appropriate redistribution of wealth is a version of the *second welfare theorem*, that under some mild regularity conditions, any Pareto efficient allocation can be supported by a competitive equilibrium