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This class

• Dynamic programming applications, part one

• Introduction to consumption-based asset pricing

– asset prices in an endowment economy

– contingent claims

– implications for asset returns
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Overview

• Endowment economy

– single type of durable asset

⇧ a fruit tree

– asset delivers flow of nondurable consumption goods (dividends)

⇧ each tree produces a random harvest of fruit

• We want to see how this durable asset is priced in equilibrium
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Setup

• Time t = 0, 1, 2, . . .

• Representative consumer, endowed with initial asset holdings k0

• Stochastic flow of consumption goods yt per unit of the asset with
conditional distribution

F (y0 | y) = Prob[ yt+1  y0 | yt = y]

• Price pt of buying the asset at date t, taken as given

• Price pt is ‘ex-dividend’ (asset bought at t, first dividend at t+ 1)
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Dynamic programming problem

• Representative consumer takes as given a pricing function p(y)

• Bellman equation can be written

v(k, y) = max
k0�0

h
u(c) + �

Z
v(k0, y0) dF (y0 | y)

i

subject to

c+ p(y)k0  (p(y) + y)k

• The RHS of the budget constraint is the consumer’s wealth

w ⌘ (p(y) + y)k

• Let k0 = g(k, y) denote the policy function implied by the
maximization on the RHS of the Bellman equation
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Dynamic programming problem

• Alternative Bellman equation using wealth as the state variable

v(w, y) = max
c�0

h
u(c) + �

Z
v(w0, y0) dF (y0 | y)

i

subject to

w0 = R(y0, y) (w � c)

• The term R(y0, y) is the gross return on the asset

R(y0, y) ⌘ p(y0) + y0

p(y)

(also the return on wealth since here there is only one asset)
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Recursive competitive equilibrium

• A recursive competitive equilibrium is a value function v(k, y),
policy function g(k, y) and pricing function p(y) such that:

(i) taking p(y) as given, v(k, y) and g(k, y) solve the consumer’s
dynamic programming problem, and

(ii) the asset market clears

g(k, y) = k0, for all k, y

• If the asset market clears, the budget constraint implies

c+ p(y) k0 = (p(y) + y) k0

so that we have the goods market clearing condition

c = y k0
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Recursive competitive equilibrium

• Normalize initial asset holdings to k0 = 1

• Then equilibrium consumption allocation is

c = y

• What are the asset prices implied by this consumption allocation?
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Characterizing asset prices

• The first order condition for the consumer can be written

u1(c)p(y) = �

Z
v1(k

0, y0) dF (y0 | y)

where it is understood that

c = (p(y) + y)k � p(y)g(k, y)

and where u1(c) and v1(k, y) denote first derivatives

• Writing

v(k, y) = u((p(y)+y)k�p(y)g(k, y))+�

Z
v(g(k, y), y0) dF (y0 | y)

the envelope condition gives

v1(k, y) = u1(c)(p(y) + y)
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Characterizing asset prices

• Combining the first order and envelope conditions gives

u1(c) = �

Z
u1(c

0)
p(y0) + y0

p(y)
dF (y0 | y)

where it is understood that c, c0 are evaluated at the optimum

• Notice that this is the same as

u1(c) = �

Z
u1(c

0)R(y0, y) dF (y0 | y)

which in our usual time-series notation is

u1(ct) = �Et {u1(ct+1)Rt+1 } , Rt+1 =
pt+1 + yt+1

pt
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Equilibrium asset prices

• In equilibrium c = y etc so equilibrium asset prices p(y) solve

u1(y) = �

Z
u1(y

0)
p(y0) + y0

p(y)
dF (y0 | y)

or

p(y) = �

Z
u1(y0)

u1(y)
(p(y0) + y0) dF (y0 | y)

• The equilibrium pricing function p(y) is a fixed point of this
functional equation

• This functional equation is linear so this basically reduces to
solving a linear algebra problem (we’ll see some examples)
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Iterated Euler equations

• In time-series notation we have

pt = Et

⇢
�
u1(yt+1)

u1(yt)
(pt+1 + yt+1)

�

• But

pt+1 = Et+1

⇢
�
u1(yt+2)

u1(yt+1)
(pt+2 + yt+2)

�
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Iterated Euler equations

• Substituting for pt+1

pt = Et

⇢
�
u1(yt+1)

u1(yt)

✓
Et+1

⇢
�
u1(yt+2)

u1(yt+1)
(pt+2 + yt+2) + yt+1

◆��

= Et

⇢
�
u1(yt+1)

u1(yt)
yt+1 + �2u1(yt+2)

u1(yt)
(yt+2 + pt+2)

�

where the second line uses the law of iterated expectations

• More generally we have, iterating forward T times,

pt = Et

(
TX

j=1

�j u1(yt+j)

u1(yt)
yt+j

)
+ Et

(
�T u1(yt+T )

u1(yt)
pt+T

)

So in the limit we have

pt = Et

( 1X

j=1

�j u1(yt+j)

u1(yt)
yt+j

)
+ Et

(
lim
T!1

�T u1(yt+T )

u1(yt)
pt+T

)
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Iterated Euler equations

• Think of this as

pt = fundamental component + speculative component

• In equilibrium, the speculative component is zero. To see why,
suppose not. For example, suppose

Et

n
�Tu1(yt+T ) pt+T

o
> 0

Then the marginal value of selling the asset exceeds the value of
consuming its dividends forever

u1(yt)pt > Et

( 1X

j=1

�ju1(yt+j) yt+j

)

So everyone would want to sell the asset, driving its price down

• Likewise if the speculative component is < 0 then everyone would
prefer to buy it, driving its price up
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Iterated Euler equations

• Thus in this model equilibrium asset prices are given by the
fundamental component

pt = Et

( 1X

j=1

�j u1(yt+j)

u1(yt)
yt+j

)

(i.e., the expected discounted value of the dividend stream)

• Dividends are discounted from t+ j back to t using the stochastic
discount factor

Mt,t+j = �j u1(yt+j)

u1(yt)
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Example: log utility

• Suppose u(c) = log c so that u1(c) = 1/c. Then

pt = Et

( 1X

j=1

�j 1/yt+j

1/yt
yt+j

)

= Et

( 1X

j=1

�j yt

)
=

�

1� �
yt

• So, for log utility, the equilibrium pricing function is

p(y) =
�

1� �
y

When y is high, consumers seek to smooth consumption by buying
assets and asset prices rise to ensure k = 1. When y is low,
consumers seek to smooth consumption by selling assets and asset
prices fall to again ensure k = 1

16



Example: log utility

• Constant price/dividend ratio

pt
yt

=
�

1� �
=

1

⇢

where ⇢ = 1
� � 1 is the pure rate of time preference

• Capital gains

pt+1 � pt
pt

=
yt+1 � yt

yt

• Gross return

Rt+1 =
pt+1 + yt+1

pt
=

1

�

yt+1

yt
= (1 + ⇢)

yt+1

yt
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Example: log utility

• In this example, equilibrium price pt does not depend on properties
of expected future yt+j . Why not?

• Suppose yt+j is expected to be high. This will tend to drive up
demand for the asset

• But high yt+j means u1(yt+j) is low. This will tend to drive down
demand for the asset

• With log utility these two effects exactly cancel
(c.f., income and substitution effects)
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Example: CRRA with IID dividend growth

• Suppose u1(c) = c�� and gt+1 ⌘ yt+1/yt is IID over time.
Equilibrium prices are given by

pt = Et

( 1X

j=1

�j

✓
yt+j

yt

◆��

yt+j

)

Dividing both sides by yt, price/dividend ratio given by

pt
yt

= Et

( 1X

j=1

�j

✓
yt+j

yt

◆1��
)

• Notice that

yt+j

yt
=

yt+j

yt+j�1
⇥ · · ·⇥ yt+1

yt
=

jY

i=1

gt+i
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Example: CRRA with IID dividend growth

• Since dividend growth is IID

Et

(
jY

i=1

g1��
t+i

)
=
�
E[g1��]

�j
= �j , � ⌘ E[g1��]

• So equilibrium price/dividend ratio is

pt
yt

=
1X

j=1

(��)j =
��

1� ��

and equilibrium pricing function is

p(y) =
��

1� ��
y

• Price/dividend ratio again constant etc, but now coefficient
depends on gt+1 distribution and risk aversion
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Discussion

• Individually, a consumer perceives net return on asset to be rt+1

• But social net return on the asset is 0 (resources spent on assets do
not deliver more resources in the future)

• The general equilibrium consequence of every individual trying to
save at rate rt+1 is a social return of 0
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Contingent claims

• An Arrow security is an asset that delivers one unit of
consumption if and only if a particular state is realized

• Let q(y0, y) denote the price in state y of an Arrow security that
delivers one unit of consumption iff y0 is realized next period

• Suppose the representative consumer can trade in a complete set of
Arrow securities

• Let a0 denote the representative consumer’s portfolio of Arrow
securities with typical element a(y0)
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Dynamic programming problem

• Pricing functions q(y0, y) and p(y) taken as given

• Bellman equation can be written

v(a, k, y) = max
a0 , k0

h
u(c) + �

Z
v(a0, k0, y0) dF (y0 | y)

i

subject to

c+ p(y)k0 +

Z
q(y0, y)a(y0) dy0  (p(y) + y)k + a(y)

• As before, can also use wealth as state variable
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Characterizing asset prices

• First order conditions for each a(y0) are

u1(c)q(y
0, y) = �v1(a

0, k0, y0) f(y0 | y)

where f(y0|y) is the density associated with F (y0|y)

• First order condition for k0 is

u1(c)p(y) = �

Z
v2(a

0, k0, y0) dF (y0 | y)

• Envelope conditions

v1(a, k, y) = u1(c)

and

v2(a, k, y) = u1(c)(p(y) + y)
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Equilibrium asset prices

• In equilibrium again have c = y

• Equilibrium prices of Arrow securities are therefore

q(y0, y) = �
u1(y0)

u1(y)
f(y0 | y)

• Equilibrium price of the durable asset again solves

p(y) = �

Z
u1(y0)

u1(y)
(p(y0) + y0) dF (y0 | y)
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Pricing other assets

• Consider an asset i that pays xi(y0) in state y0

• By no-arbitrage, this asset will have price equal to

qi(y) =

Z
q(y0, y)xi(y

0) dy0

• And so in equilibrium

qi(y) = �

Z
u1(y0)

u1(y)
xi(y

0) dF (y0 | y)

(i.e., of the form qi = E[Mxi] where M is the one-period SDF)

• Payoff xi(y0) could be anything, e.g., payoffs of some exotic option
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Asset returns

• Let Ri(y0, y0) denote the gross return on such an asset

Ri(y0, y) =
xi(y0)

qi(y)

• Can then restate these conditions in terms of asset returns

1 = �

Z
u1(y0)

u1(y)
Ri(y0, y) dF (y0 | y)

• Or in more standard time-series notation

1 = Et

(
�
u1(yt+1)

u1(yt)
Ri

t+1

)
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Risk free asset

• Consider a sure claim to a unit of consumption at next period

• This has x(y0) = 1 for all y0 and has price

qf (y) =

Z
q(y0, y) 1 dy0 = �

Z
u1(y0)

u1(y)
dF (y0 | y)

and return Rf (y) independent of y0 (in this sense it is risk-free)

Rf (y) =
1

qf (y)

• Hence in time-series notation we can write

1 = Et

(
�
u1(yt+1)

u1(yt)
Rf

t

)

Risk-free return is the reciprocal of the expected SDF

Rf
t = 1

,
Et

⇢
�
u1(yt+1)

u1(yt)

�
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Consumption-based asset pricing

• Return on any asset i

1 = Et
�
Mt+1R

i
t+1

 
, Mt+1 = �

u1(ct+1)

u1(ct)

where Mt+1 is the one period stochastic discount factor (SDF)

• Return on a risk-free asset

1 = Et
�
Mt+1R

f
t

 

• Expanding the expectation of the product gives

1 = Et
�
Mt+1

 
Et
�
Ri

t+1

 
+ Covt

�
Mt+1 , R

i
t+1
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Expected excess returns

• Since Rf
t = 1/Et

�
Mt+1

 
we can write this as

1 =
1

Rf
t

Et
�
Ri

t+1

 
+ Covt

�
Mt+1 , R

i
t+1

 

or

Et
�
Ri

t+1

 
�Rf

t = �Rf
t Covt

�
Mt+1 , R

i
t+1

 

• All assets have an expected return equal to the risk-free return
plus a risk premium (which may be positive or negative)

30



Risk premia

• The risk premia are given by

�Rf
t Covt

�
Mt+1 , R

i
t+1

 
= �

Covt
�
u1(ct+1) , Ri

t+1

 

Et{u1(ct+1)}

• In general these risk premia are time-varying via the conditioning
information (but we will see examples where they are constant)

• What determines risk premia is not the variance of returns, but
rather how those returns covary with consumption

• Investors do not care about the volatility of their portfolio per se,
it depends on how that translates to volatility in consumption
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Risk premia

• Asset returns that covary negatively with Mt+1 deliver high payoffs
when marginal utility is low — these are a bad hedge, will be in low
demand and carry a high risk premium

(assets that covary positively with ct+1 make consumption more
volatile)

• Asset returns that covary positively with Mt+1 deliver high payoffs
when marginal utility is high — these are a good hedge, will be in
high demand and carry a low (or negative) risk premium

(assets that covary negatively with ct+1 make consumption less
volatile)
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Idiosyncratic risk is not priced

• Only that part of an asset return that is correlated with the
aggregate Mt+1 leads to a risk adjustment (positive or negative)

• The idiosyncratic component in returns offers no better (or worse)
hedging opportunities and so is not priced
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Consumption CAPM

• This is a version of the capital asset pricing model (CAPM) except
that covariance with the ‘market return’ is replaced with
covariance with the SDF

• This setting where

Mt+1 = �
u1(ct+1)

u1(ct)

is often referred to as the consumption-CAPM

• Although elegant and intuitive, it is difficult to reconcile this
model with data on stock and bond returns (huge literatures on
the ‘equity premium puzzle’, the ‘risk-free rate puzzle’ etc etc)
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Next class

• Job search and matching
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