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This class

e Dynamic programming applications, part one

e Introduction to consumption-based asset pricing

— asset prices in an endowment economy
— contingent claims

— implications for asset returns



Overview

e Endowment economy

— single type of durable asset

& a fruit tree

— asset delivers flow of nondurable consumption goods (dividends)

¢ each tree produces a random harvest of frust

e We want to see how this durable asset is priced in equilibrium



Setup

Timet=0,1,2,...
Representative consumer, endowed with initial asset holdings kg

Stochastic flow of consumption goods y; per unit of the asset with
conditional distribution

F(y'|y) = Problyrr1 <y |yt = 9]

Price p; of buying the asset at date ¢, taken as given

Price p; is ‘ex-dividend’ (asset bought at ¢, first dividend at ¢t 4+ 1)



Dynamic programming problem

Representative consumer takes as given a pricing function p(y)

Bellman equation can be written

v(k,y):max +6/ ") dF( y’\y)}

k'>0
subject to

c+pyk < (p(y) +y)k

The RHS of the budget constraint is the consumer’s wealth

w = (p(y) +y)k

Let k' = g(k,y) denote the policy function implied by the
maximization on the RHS of the Bellman equation
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Dynamic programming problem

e Alternative Bellman equation using wealth as the state variable

o(w,y) = max [u() + B [ o(w',y/)dF (Y1)

c>0

subject to

w' =R, y) (w—c)

e The term R(y',y) is the gross return on the asset

p(y') +¥
p(y)

Ry, y) =

(also the return on wealth since here there is only one asset)



Recursive competitive equilibrium

o A recursive competitive equilibrium is a value function v(k,y),
policy function g(k,y) and pricing function p(y) such that:

(i) taking p(y) as given, v(k,y) and g(k,y) solve the consumer’s
dynamic programming problem, and

(ii) the asset market clears

g(k7y) — kOa for all kay

e If the asset market clears, the budget constraint implies

c+p(y) ko = (p(y) +¥) ko

so that we have the goods market clearing condition

c=1yko



Recursive competitive equilibrium

e Normalize initial asset holdings to kg =1

e Then equilibrium consumption allocation is

C=1Y

e What are the asset prices implied by this consumption allocation?



Characterizing asset prices

e The first order condition for the consumer can be written
w(@p(y) = 8 [ vk dF (| y)
where 1t is understood that

c= (p(y) +y)k —p(y)g(k,y)

and where ui(c) and vy (k,y) denote first derivatives
e Writing
v(k,y) = u((p(y)+y)k—p(y)g(k,y))+6/v(g(k,y),y’) dF(y'|y)

the envelope condition gives

v1(k,y) = u1(c)(p(y) +y)



Characterizing asset prices

e Combining the first order and envelope conditions gives

5/%1 +y dF(y' | y)

where it is understood that ¢, ¢’ are evaluated at the optimum
e Notice that this is the same as
—5 [ w(¢) R ) dF(y' |y

which in our usual time-series notation 1is

P11 + Yer1
Dt

uy(ct) = BE; { ur(cey1)Rit1 } Ri1q =

10



Equilibrium asset prices

e In equilibrium ¢ = y etc so equilibrium asset prices p(y) solve

B/m y dF(y' | y)

or

o) =5 [ W) ) + ) dE G |y)

u1(y)

e The equilibrium pricing function p(y) is a fixed point of this
functional equation

e This functional equation is linear so this basically reduces to
solving a linear algebra problem (we’ll see some examples)

11



Iterated Euler equations

e In time-series notation we have

pr = Iy { 5u1(yt+1) (Pt+1 + Yesr1) }
Ul(yt)

e But

Uu
pir1 = K { 5 1(ge+2) (Pt42 + Yir2) }
ul(yt+1)
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Iterated Euler equations
e Substituting for p;1q

v, — E, { Bu;(ly(ty:)l) (Et—H {55182:3 (Pt+2 + Yt42) + yt+1> }}

= (S e P )

where the second line uses the law of iterated expectations
e More generally we have, iterating forward 1T times,
- jul(yt+j) 7 u1(Ye+r)
pr=E Y Yerj ¢+ Eeq B Pt+T
—1 u1(ye) u1(yt)
So in the limit we have

— ;U1 (Yt j) U (YT
— F E J : 1) 1
Dt t{ B w1 (y:) yt—l—]} + t{ Tl_{lgo B Dt+T

= u1(Ye)

13



Iterated Euler equations
e Think of this as

p+ = fundamental component + speculative component

e In equilitbrium, the speculative component is zero. To see why,
suppose not. For example, suppose

1N {5TU1 (ye+1) pt+T} > 0

Then the marginal value of selling the asset exceeds the value of
consuming its dividends forever

w1 (Yt )pe > Et{ Z B u (Ys15) yt+j}

g=1

So everyone would want to sell the asset, driving its price down

e Likewise if the speculative component is < 0 then everyone would
preter to buy it, driving its price up

14



Iterated Euler equations

e Thus in this model equilibrium asset prices are given by the
fundamental component

Et{ Zﬁj“l ytﬂ j}

(i.e., the expected discounted value of the dividend stream)

e Dividends are discounted from ¢ + 5 back to t using the stochastic
discount factor

Mg =B 1 W)
o u1(yt)
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Example: log utility
e Suppose u(c) = logc so that ui(c) = 1/c. Then

1 /yy ]
n-Ed S

:Et{ZB‘j?Jt} — 1€53/t
j=1

e So, for log utility, the equilibrium pricing function is

p(y) = %y

When y is high, consumers seek to smooth consumption by buying
assets and asset prices rise to ensure £k = 1. When y is low,
consumers seek to smooth consumption by selling assets and asset
prices fall to again ensure £ =1
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Example: log utility

e Constant price/dividend ratio

pe _ B _1

vy 1-=8 p

where p = % — 1 is the pure rate of time preference

e (Capital gains

Pt4+1 — Pt _ Yt+1 — Yt
Pt Yt

e (Gross return

Pt+1t Y41 L yern (14 p) Yt+1

Riv1 = = =
Dt By Yt
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Example: log utility

In this example, equilibrium price p; does not depend on properties
of expected future y;4 ;. Why not?

Suppose ¥y;+; 1s expected to be high. This will tend to drive up
demand for the asset

But high ¢4, means u;(yey;) is low. This will tend to drive down
demand for the asset

With log utility these two effects exactly cancel
(c.f., income and substitution effects)
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Example: CRRA with 1ID dividend growth

e Suppose ui(c) = ¢ 7 and gi11 = yea1/y is 1ID over time.
Equilibrium prices are given by

pr = Et{ > B (y;?) yH—j}
j=1

Dividing both sides by 1, price/dividend ratio given by

00 N\ l—0o
gl N (?JHJ)
Yt e Yt

e Notice that

Yt+j ] 1
i _ Yt+j N Yt+ _ Hgt—l—z’
Yt Yt+j—-1 Yt 1



Example: CRRA with 1ID dividend growth
e Since dividend growth is IID

{ Hgt+z } 1_0])j — 5j7 0 = ]E[gl_a]

e So equilibrium price/dividend ratio is

)
P S 3y = O

U

and equilibrium pricing function is

5
p(y)zlfﬁéy

e Price/dividend ratio again constant etc, but now coefficient
depends on g;+1 distribution and risk aversion
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Discussion

e Individually, a consumer perceives net return on asset to be 7y

e But social net return on the asset is 0 (resources spent on assets do
not deliver more resources in the future)

e The general equilibrium consequence of every individual trying to
save at rate ryyq is a social return of 0
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Contingent claims

An Arrow security is an asset that delivers one unit of
consumption if and only if a particular state is realized

Let q(y/, y) denote the price in state y of an Arrow security that
delivers one unit of consumption iff ¥’ is realized next period

Suppose the representative consumer can trade in a complete set of
Arrow securities

Let a’ denote the representative consumer’s portfolio of Arrow
securities with typical element a(y’)
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Dynamic programming problem

e Pricing functions ¢(3/,y) and p(y) taken as given

e Bellman equation can be written

vlak,y) = max [u(c) + 5 [ via' K.y)dF( |)

a’ k'

subject to

¢+ p(y)k' + /Q(y’, y)a(y') dy' < (p(y) +y)k + a(y)

e As before, can also use wealth as state variable
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Characterizing asset prices

e First order conditions for each a(y’) are

ui(c)q(y',y) = Bui(a’, kK y") fF(y' |y)

where f(y'|y) is the density associated with F'(y'|y)

e First order condition for & is
w(@p(y) = B [ vala K.y dF ()
e Envelope conditions
vi(a, k,y) = ui(c)
and

va(a, k,y) = u1(c)(p(y) +y)
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Equilibrium asset prices

e In equilibrium again have ¢ =y

e Equilibrium prices of Arrow securities are therefore

/ o ul(y/) /
q(y',y) =P (4] W' ly)

e Equilibrium price of the durable asset again solves

p) =5 [0 /) + ) dF ()
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Pricing other assets

Consider an asset i that pays x;(y’) in state g/

By no-arbitrage, this asset will have price equal to

qi(y) = / q(y'sy) xi(y") dy’

And so in equilibrium

B/ y/ y' ) dF(y' | y)

1(y)
(i.e., of the form ¢; = E|Mx;] where M is the one-period SDF)

Payoff z;(y') could be anything, e.g., payoffs of some exotic option
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Asset returns

e Let R'(y/,y') denote the gross return on such an asset

zi(y')
¢ (y)

R'(y,y) =
e (Can then restate these conditions in terms of asset returns

(', y) dF (Y | y)

e Or in more standard time-series notation

1 = Et{ 5U1(yt+1) Ry }

w1 (Yt)
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Risk free asset

e Consider a sure claim to a unit of consumption at next period

e This has z(y') = 1 for all ¥’ and has prlce

0 (y) = / (o y)1dy = an

and return R/ (y) independent of ¥ (in this sense it is risk-free)

Fooy— L
R W) a5 (y)

e Hence in time-series notation we can write

_E { S Rf}

u1(Yt)
Risk-free return is the reciprocal of the expected SDF

W= fuftited)
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Consumption-based asset pricing

e Return on any asset ¢

w1 (1)
u(ct)

1 = Et{Mt+1Ri—|—1}7 Mt—|—1 =

where My, is the one period stochastic discount factor (SDF)

e Return on a risk-free asset
1 =B {M; 1R}
e Expanding the expectation of the product gives

1 — Et{Mt—l—l}Et{Ri—Fl} —|_ COVt{Mt—I—l ’ R;LH—l}
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Expected excess returns

e Since R{ = 1/Et{Mt+1} we can write this as

1

Rf ]Et{Rt+1} + COVt{MH_l Rt—l—l}

or
Et{R;{H} — R{ = —Rtf COVt{Mt+1 ; Ri+1}

e All assets have an expected return equal to the risk-free return
plus a risk premium (which may be positive or negative)
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Risk premia

The risk premia are given by

Covt{ul(ctH) : R};H}
Ei{ui(ce+1)}

In general these risk premia are time-varying via the conditioning

—R} Covi{ My, R} = —

information (but we will see examples where they are constant)

What determines risk premia is not the variance of returns, but
rather how those returns covary with consumption

Investors do not care about the volatility of their portfolio per se,
it depends on how that translates to volatility in consumption
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Risk premia

e Asset returns that covary negatively with M;1 deliver high payofts
when marginal utility is low — these are a bad hedge, will be in low
demand and carry a high risk premium

(assets that covary positively with ¢;11 make consumption more
volatile)

e Asset returns that covary positively with M;q deliver high payoffs
when marginal utility is high — these are a good hedge, will be in

high demand and carry a low (or negative) risk premium

(assets that covary negatively with c;11 make consumption less
volatile)
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Idiosyncratic risk is not priced

e Only that part of an asset return that is correlated with the
aggregate My leads to a risk adjustment (positive or negative)

e The idiosyncratic component in returns offers no better (or worse)
hedging opportunities and so is not priced
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Consumption CAPM

e This is a version of the capital asset pricing model (CAPM) except
that covariance with the ‘market return’ is replaced with
covariance with the SDF

e This setting where

w1 (ci41)
u(ct)

M1 =0

is often referred to as the consumption-CAPM
e Although elegant and intuitive, it is difficult to reconcile this

model with data on stock and bond returns (huge literatures on
the ‘equity premium puzzle’, the ‘risk-free rate puzzle’ etc etc)

34



Next class

e Job search and matching
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