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This course

An advanced course in macroeconomic theory

First half: dynamic programming methods for deterministic and
stochastic environments, applications to consumption-savings
problems and job search, etc

Second half: more elaborate applications, including general
equilibrium models with complete and incomplete asset markets,
income and wealth inequality, firm dynamics, etc

Along the way, there will be a lot of programming in MATLAB
(or your preferred language)



Course material
No required text, but a useful supplement is

— Ljungqvist and Sargent (2018): Recursive Macroeconomic Theory.
4th Edition.

Also useful for the first half of the course

— Miranda and Fackler (2002): Applied Computational Economics and
Finance.

— Stokey and Lucas with Prescott (1989): Recursive Methods in
Economic Dynamics.

Various journal articles and working papers, posted to the LMS

Slides for each lecture, posted to the LMS



Assessment

Task Due date Weight
Problem set #1 Tuesday March 26 5%
Problem set #2 Tuesday April 16 5%
Problem set #3 Tuesday May 14 5%
Problem set #4 Tuesday May 28 5%
Mid-semester exam Wednesday April 17 30%
Final exam exam block 50%



Tutorials

Tutorial times

Fridays 15:15—16:15 Alan Gilbert G20

Tutor: Omid Mousavi.

Tutorials begin next week. An essential part of the course.



Lecture schedule

e [irst half: core material

— dynamic programming methods, lectures 1-8
including a fair amount of practical computational tools
— dynamic programmaing applications, lectures 9—12

consumption-savings problems, job search, asset pricing

e Mid-semester exam based on first half of the course



Lecture schedule

e Second half: more elaborate applications and extensions

— complete-markets general equilibrium, lectures 15—-16
contingent claims, aggregate vs. idiosyncratic risk

— incomplete markets, lectures 17-19
implications for income and wealth inequality

— firm dynamaics, lectures 20-21
entry and exit, job turnover, misallocation

— ‘behavioural’ macro, lectures 22—23

dynamically inconsistent preferences, temptation and self-control

e ['inal exam based draws more on second half of course
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Rest of this class

Introduction to intertemporal choice in discrete time




Endowments

e Discrete time t =0,1,2,...
e Single agent is endowed with a stream of goods

Yo, Y1, Y2,

representing the amount of resources they have at each date

e Write this endowment stream

Yy = {Z/O, Y1, Y2, }



Preferences

Single agent has preferences over streams of consumption

Co, C1, C2,

Write this consumption stream
c=1{cy, c1, cC2, ... }

Preferences are represented by a utility function
Ul(c)

which ranks consumption streams

Suppose for simplicity U(e) strictly increasing, concave
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Autarky

e One feasible outcome is autarky, c; = y; for each t, with payoft

Ul(y)

e Depending on market structure, may be possible to do better
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Borrowing and lending

Suppose agent can borrow or lend at real interest rate » > 0

Agent with assets a; at the beginning of ¢ has interest payments
ra¢

which may be positive or negative
If a; > 0, interest income ra; > 0 adds to endowment

If a; < 0, debt servicing ra; < 0 subtracts from endowment
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Flow budget constraint

e Budget constraint for date ¢

ct + a1 < (1+r)ay + yy

with the understanding that ag = 0

e Since utility function is strictly increasing in each c¢;, budget
constraint holds with equality

ct + a1 = (1 +7r)ay + yy

e We will assume that it is not possible to rollover debt forever
(‘no Ponzi schemes’)

13



Iterating forward

e At t =0 we have
Co + a1 = Yo
e At ¢t =1 we have
c1 +az = Ray +y1 = R(yo — co) + 1
where R := 1+ r denotes the gross real interest rate
o At t =2 we have

co + a3 = Rag + y2 = R(R(yo — Co) T (yl — Cl)) T Y2

14



Iterating forward
e (Collecting terms and rearranging
Rco + Rey + ca + a3 = R*yo + Ry1 + v

e [terating this out to some arbitrary date 1" > 2

RTco+RTrei+RT2cot- - Aceptarys = RTyo+ Ry +RT 2y,
e Dividing both sides by R! gives

cot+R e +R Zco+- -+ R Ter+ R ariy = yo+ R My + R 2y
e Or more compactly

T T
Y R'q+R Tap =) Ry
t=0 t=0

15



Intertemporal budget constraint

e Taking the limit as T' — oo and supposing that

lim R_TCLT_H =0
T—00

we get

oo 0. @)
Z Rt = Z Ry,
=0 =0

e This is known as the agent’s intertemporal budget constraint
(as opposed to their single-period budget constraint)

16



Intertemporal prices

o Let p; := R denote the intertemporal price of consumption.
The price as of date zero of consumption to be delivered on date ¢

e Can then write the intertemporal budget constraint as

O @)
Z PtCt = Z PtUt
t=0 t=0

or 1n vector notation
pPp-c=p-y
e Notice that

pes1 _ RTUFD n-l

pe R

e The gross real interest rate is an intertemporal relative price
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Intertemporal prices

e Aside: suppose we had time-varying real interest rates
Rt =1+ Tt

e Then intertemporal price of consumption would be

{
pt = H R,
s=1
with

Pt+1 1
T R
D t+1

e But we will stick with constant R and hence p; = R~ for now
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Standard consumer problem

e Now looks like a standard consumer choice problem

e Choose bundle ¢ > 0 to maximize
U(c)
subject to the budget constraint
p-c=p-y
e Lagrangian with single multiplier A > 0

U(e)+Ap- (y —c)
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Standard consumer problem

e System of first order necessary conditions

0
—U =\ t=0,12,...
aCt (C) Dt g Ly Ay

e This system pins down optimal consumption choices given A and p

c(\,p)

e Budget constraint then pins down multiplier A given y and p

p-cAp)=p-y = Auy,p)

e Solution can then be written

*

c" =c(\Ny,p),p)

e Prices p matter both directly (substitution effects) and indirectly
via A (income/wealth effects)
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Marginal rates of substitution

Let U.; denote the marginal utility of date-t consumption

0
Uc’t = a—CtU(C)

System of first order conditions can be written
U ct — AD¢
Take the ratio of first order conditions at ¢t + 1 and ¢

Uet+1  Dit1 _ p-l

U c,t Pt

This is a standard ‘marginal rate of substitution (MRS) equals
relative price’ tangency condition
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Time-separable utility

e We will typically use the time-separable utility function
Ule) =) Blule), 0<B<1
t=0

with strictly concave period utility, v'(¢) > 0, v”(c) < 0

e Future utility is discounted by constant factor [

17 57 /827 /837

e Marginal utility of date-t consumption

0
Uct°

= 8—ctU(C) = B/ (¢y)

depends only on ¢t and ¢;, not consumption on any other date
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Marginal rates of substitution

e System of first order conditions is then

Btul(ct) = ADt
e Marginal rate of substitution between ¢ + 1 and ¢ is then

5t+1“'(0t+1) _ u'(cti1)

Btul(c) 7w (c)

e So our tangency condition can be written

u (crat) _ Pl _ poa
U/(Ct) Dt
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Consumption Euler equation

e This is often expressed as either

U’(Ct+1)R —1
u'(cy)

or

U/(Ct) — 5R’LL/(CH_1)

e Known as the consumption Euler equation, the key optimality
condition in many consumption-savings problems

e Main idea: consuming 1 unit less consumption today costs me
u'(ct) utility today but earns me R units tomorrow which when
converted to utility and discounted back to today is SRu'(ct11).
At the optimum, these marginal costs and benefits are equated
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Qualitative dynamics

Recall that u”(¢) < 0. This implies
Ct4+1 > Ct = u/(Ct_|_1) < U,(Ct) = 5R > 1

Recall R =1 + r and likewise define the pure rate of time
preference p > 0 by 8= (14 p)~!

Then we can write
Ct4+1 > Ct = r>p

Consumption is growing when real interest rate is high relative to
the rate of time preference
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Example

e Suppose period utility function is

u(c) = e o> 0

e Consumption Euler equation
—O0 ___ —0
¢, " = PRei
or

L= (BR)VC

Ct

e Hence consumption growth is just

1 _
log (QH) = —log(BR) ~ i
Ct 0 O
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Elasticity of substitution

e Parameter 1/0 > 0 measures the sensitivity of consumption growth
to real interest rates

e Write consumption Euler equation in terms of intertemporal prices

1/o
Ct+1 _ ( Pt )
Ct Pt+1

o [Llasticity of substitution, as we move along indifference curve in
response to changing relative prices

dlog(ctH) 1
dlog(pt“) o
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Elasticity of substitution

e Three important special cases
(i) perfect substitutes, o = 0

log (%) very sensitive to even small changes in r

(ii) log utility, o = 1 |use I’'Hopital’s rule]

log (Ct“) responds 1-for-1 to changes in r

C¢

(iii) perfect complements, o = 0o

log (C’zl) insensitive to even large changes in r
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Example

e Kuler equation gives us consumption growth

= = (BR)'°

Ct

e Hence iterating forward from date ¢ = 0 we have
ct = (BR)"7 ¢y

e Pin down consumption level using intertemporal budget constraint

iR HBR)Y ¢y —ZR Y
t=0
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Example

e Hence initial consumption is

co = (1 L [5R1_U]1/0) ZR—tyt

t=0

from which consumption evolves according to Euler equation

e What matters for level of consumption is ‘permanent income’

0. @)
Z Ry,
=0

e Consumption should not respond much to transitory changes in

30



Example

e What happened to borrowing and lending?

e Having solved for consumption ¢; can back out the net asset
positions a; that implement this

arr1 = Ray +yr — ¢4

e Can also directly use flow budget constraints to solve optimization
problem (circumventing need to form intertemporal constraint)
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Sequence of constraints approach

e Lagrangian with multiplier A; > 0 for each flow budget constraint

L= Z Bhu(er) + Z M |Rag + 1y — ¢ — agq1)
t=0 t=0

e First order necessary conditions

Ct . Btu’(ct) — )\t =0
ap41 - — M+ N1 R=0
)\t: Rat+yt—ct—at+1:O

These need to hold at every date
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Sequence of constraints approach

e Hence we get
At = RA\1q
with
e = B (¢p)
e This is just our consumption Euler equation again

u'(c) = BRU (coy1)
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Next class

e Review of neoclassical growth model

— production, not an endowment economy
— endogenous return on capital

— links capital accumulation with consumption/savings decisions
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