# PhD Topics in Macroeconomics

Lecture 9: misallocation, part one

Chris Edmond

 $2nd \ Semester \ 2014$ 

## This lecture

Restuccia/Rogerson (2008) model of idiosyncratic distortions

- **1-** model with exogenous idiosyncratic distortions
- **2-** calibration to firm size distribution
- **3-** quantifying the extent of aggregate productivity losses

## Overview

- Goal: to assess quantitative significance of resource misallocation across productive units
- Introduces idiosyncratic (micro) distortions to producer prices
  - product market regulation etc
  - represented as output tax/subsidy  $\tau$
- Misallocation can cause quantitatively large output and productivity losses, on the order of 30 to 50%
- Distortions may or may not be correlated with firm-size, generally larger effects if correlated with size

## Model

• Representative consumer maximizes

$$\sum_{t=0}^{\infty} \beta^t U(C_t)$$

subject to the period budget constraint

$$C_t + K_{t+1} = w_t + (r_t + 1 - \delta)K_t + \Pi_t - T_t$$

where  $\Pi_t$  and  $T_t$  denote aggregate lump-sum profits and net taxes

• In steady state

$$r=1/\beta-1+\delta$$

### Firms

- Face output tax/subsidy  $\tau \in (-1, +1)$
- Idiosyncratic productivity a is constant over time
- Production function

$$y = ak^{\alpha}n^{\gamma}, \qquad 0 < \alpha + \gamma < 1 \qquad (DRS)$$

• Maximizing static profits

$$\pi(a,\tau) = \max_{k,n} \left[ (1-\tau)ak^{\alpha}n^{\gamma} - rk - wn - f \right]$$

implies factor demands  $k(a, \tau)$  and  $n(a, \tau)$ 

• Fixed cost f, entry cost  $f_e$ , exogenous exit probability  $1 - \phi$ 

## Entry/exit

• Let  $v(a, \tau)$  denote expected present value of per-period profits

$$v(a,\tau) = \frac{\pi(a,\tau)}{1-\phi\beta}$$

• Firms face *joint distribution*  $G(a, \tau)$  with

 $G(a,\tau) = P(\tau \,|\, a)H(a)$ 

allows distortion to be correlated with productivity via  $P(\tau \mid a)$ 

• Free entry condition

$$v_e := \iint \max\left[0, v(a, \tau)\right] dG(a, \tau) \le f_e$$

## Stationary distribution

- Let  $\mu_t(a, \tau)$  denote the time-t joint distribution of  $(a, \tau)$
- Law of motion

$$\mu_{t+1}(a,\tau) = \phi \mu_t(a,\tau) + m_t e_t(a,\tau) G(a,\tau)$$

where  $m_t$  denotes mass of entrants and  $e_t(a, \tau) = 1$  if there is 'successful' entry

• In a stationary equilibrium this simplifies to

$$\mu(a,\tau) = m \frac{e(a,\tau)G(a,\tau)}{1-\phi}$$

where m and  $e(a, \tau)$  are to be determined

## Market clearing conditions

- Key equilibrium conditions: market clearing, free entry, optimal production and entry/exit policies of firms, the consumption Euler equation, and the definition of a stationary distribution for  $\mu(a, \tau)$
- Labor market

$$\iint n(a,\tau) \, d\mu(a,\tau) = 1$$

• Capital market

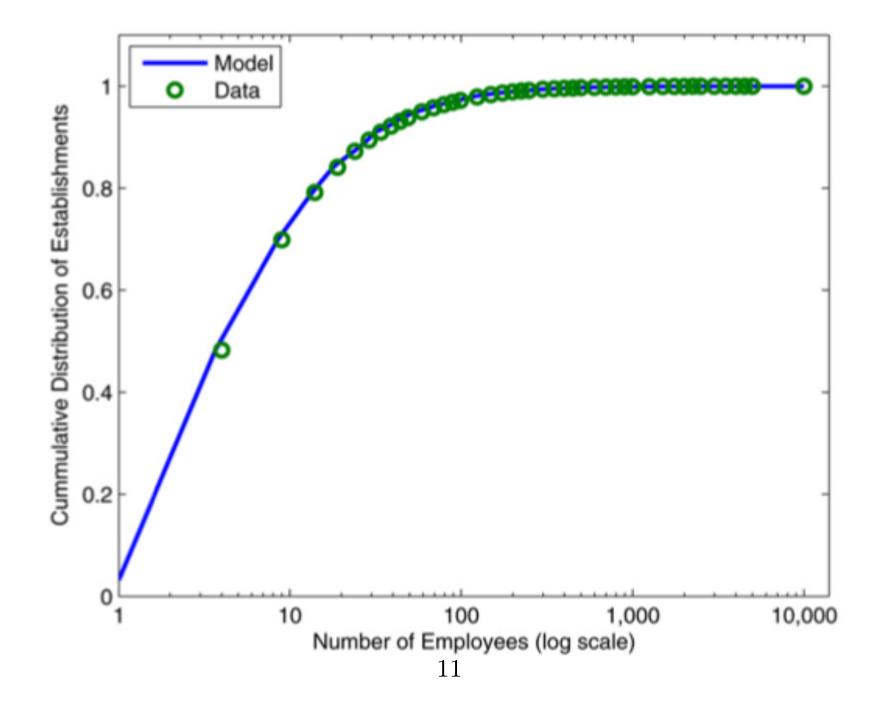
$$\iint k(a,\tau) \, d\mu(a,\tau) = K$$

• Goods market

$$C + \delta K + mf_e = \iint \left[ ak(a,\tau)^{\alpha} n(a,\tau)^{\gamma} - f \right] d\mu(a,\tau)$$

### Calibration: aggregates

- Treat US as no distortion benchmark (i.e.,  $\tau = 0$  for all a)
- Time period: one year,  $\beta = .96$
- DRS in production:  $\alpha + \gamma = .85$ , split 1/3 to capital and 2/3 to labor, so  $\alpha = .28$  and  $\gamma = .57$
- Depreciation  $\delta = .08$  to match investment/output ratio  $\delta K/Y = .2$  (equivalently, K/Y = 2.3)
- No per-period fixed costs f = 0, entry cost normalized to  $f_e = 1$
- Exit probability  $1 \phi = .10$  per period


## Calibration: heterogeneity

• Range of producer productivities pinned down by relative employment

$$\frac{n_i}{n_j} = \left(\frac{a_i}{a_j}\right)^{1/(1-\alpha-\gamma)}$$

- In US data, biggest firms are 10,000 times larger than smallest. With  $\alpha + \gamma = .85$ , largest have productivity 3.98 times smallest
- Distribution H(a) (here = G(a)) chosen to match size distribution on a grid with 100 points

### Calibrated size distribution



## Most firms small but most output from large

#### Table 2

#### Distribution statistics of benchmark economy

|                         | Establishment size (number of employees) |         |       |
|-------------------------|------------------------------------------|---------|-------|
|                         | < 5                                      | 5 to 49 | ≥ 50  |
| Share of establishments | 0.56                                     | 0.39    | 0.05  |
| Share of output         | 0.08                                     | 0.34    | 0.58  |
| Share of labor          | 0.08                                     | 0.34    | 0.58  |
| Share of capital        | 0.08                                     | 0.34    | 0.58  |
| Average employment      | 2.4                                      | 15.5    | 183.0 |

Since capital/labor ratios are equalized across producers, the distribution of labor and capital is the same as the distribution of output across producers.

## Quantitative analysis

#### • Two cases

- (i) uncorrelated distortions,  $\tau$  independent of a
- (ii) correlated distortions, (either positively or negatively)
- Want to disentangle the micro misallocation effect of  $\tau$  on TFP from the usual distortionary effect of taxes on capital accumulation
- Adjust aggregate level of  $\tau$  such that there is no effect on K

## **Uncorrelated idiosyncratic distortions**

- To begin: half producers taxed, half subsidized
- Resources flow from taxed to subsidized, but no systematic effect across productivity classes
- Four tax rates:  $\tau = 0.1, 0.2, 0.3, 0.4$  with associated subsidies  $\tau_s$
- Subsidies to undo effects on capital accumulation are smaller:  $\tau_s = 0.06, 0.09, 0.10, 0.11$
- This is because of convexity of capital demand  $k(s, \tau)$  in  $\tau$

#### Table 3 Effects of idiosyncratic distortions—uncorrelated case

| Variable     | τ <sub>t</sub> |      |      |      |  |
|--------------|----------------|------|------|------|--|
|              | 0.1            | 0.2  | 0.3  | 0.4  |  |
| Relative Y   | 0.98           | 0.96 | 0.93 | 0.92 |  |
| Relative TFP | 0.98           | 0.96 | 0.93 | 0.92 |  |
| Relative E   | 1.00           | 1.00 | 1.00 | 1.00 |  |
| $Y_s/Y$      | 0.72           | 0.85 | 0.93 | 0.97 |  |
| S/Y          | 0.05           | 0.08 | 0.09 | 0.10 |  |
| τς           | 0.06           | 0.09 | 0.10 | 0.11 |  |

Non-degenerate distribution of size within productivity class.  $Y_S/Y$  denotes output share of subsidized firms, S/Y aggregate subsidy as share of output.

#### Table 4

#### Relative TFP-uncorrelated distortions

| Fraction of<br>establishments taxed (%): | $\tau_t$ |      |      |      |
|------------------------------------------|----------|------|------|------|
|                                          | 0.1      | 0.2  | 0.3  | 0.4  |
| 90                                       | 0.92     | 0.84 | 0.78 | 0.74 |
| 80                                       | 0.95     | 0.89 | 0.84 | 0.81 |
| 60                                       | 0.98     | 0.94 | 0.91 | 0.89 |
| 50                                       | 0.98     | 0.96 | 0.93 | 0.92 |
| 40                                       | 0.99     | 0.97 | 0.95 | 0.94 |
| 20                                       | 1.00     | 0.99 | 0.98 | 0.97 |
| 10                                       | 1.00     | 0.99 | 0.99 | 0.99 |

Instead of 50/50 split between taxed/subsidized firms, we now have different configurations. When most taxed and few subsidized, amount of misallocation is larger.

## **Correlated idiosyncratic distortions**

- Suppose low productivity firms subsidized, high productivity taxed
- To begin: lowest half subsidized, top half taxed
- Systematic reallocation across productivity classes, not just within productivity class (i.e., not just in response to 'noise')

### Table 5

### Effects of idiosyncratic distortions-correlated case

| Variable          | τ <sub>t</sub> |      |      |      |  |
|-------------------|----------------|------|------|------|--|
|                   | 0.1            | 0.2  | 0.3  | 0.4  |  |
| Relative Y        | 0.90           | 0.80 | 0.73 | 0.69 |  |
| Relative TFP      | 0.90           | 0.80 | 0.73 | 0.69 |  |
| Relative E        | 1.00           | 1.00 | 1.00 | 1.00 |  |
| Y <sub>s</sub> /Y | 0.42           | 0.67 | 0.83 | 0.92 |  |
| S/Y               | 0.17           | 0.32 | 0.43 | 0.49 |  |
| τς                | 0.40           | 0.48 | 0.52 | 0.53 |  |

Larger implications for output/TFP. Also more costly to finance.

#### Table 6

#### Relative TFP-correlated distortions

| Fraction of<br>establishments taxed (%): | τ <sub>t</sub> |      |      |      |
|------------------------------------------|----------------|------|------|------|
|                                          | 0.1            | 0.2  | 0.3  | 0.4  |
| 90                                       | 0.81           | 0.66 | 0.56 | 0.51 |
| 80                                       | 0.84           | 0.70 | 0.62 | 0.57 |
| 60                                       | 0.88           | 0.77 | 0.69 | 0.65 |
| 50                                       | 0.90           | 0.80 | 0.73 | 0.69 |
| 40                                       | 0.92           | 0.82 | 0.76 | 0.72 |
| 20                                       | 0.95           | 0.89 | 0.84 | 0.81 |
| 10                                       | 0.97           | 0.92 | 0.88 | 0.86 |

Again, amount of misallocation is larger when most taxed and few subsidized.

## Extensions

- Non-constant aggregate capital
  - taxing all but some exempt producers (rebated lump-sum)
  - lower capital stock, wages and entry also fall in proportion
- Taxes on capital and labor
  - taxes on capital and/or labor inputs, not output

### Next

- Misallocation, part two
- Evidence from micro data
  - ♦ HSIEH AND KLENOW (2009): Misallocation and manufacturing TFP in China and India, Quarterly Journal of Economics.