PhD Topics in Macroeconomics

Lecture 7: innovation and firm dynamics, part three

Chris Edmond

 $2nd \ Semester \ 2014$

This lecture

- Lentz/Mortensen applications of Klette/Kortum-style model
 - 2005 paper: extension to ex ante heterogeneous firms; implications for growth through reallocation/selection
 - 2008 paper: structural estimation using Danish panel data

Lentz/Mortensen (2005): overview

- Fundamental heterogeneity in Klette/Kortum model
- At birth, firm draws profitability type π (\Leftrightarrow step size q). Applies to all of a firm's portfolio of n products
- Growth through two kinds of *reallocation*
 - (i) from obsolete vintages to newest vintages, as in Klette/Kortum
 - (ii) from low- π to high- π firms within set of continuing firms
 - This second kind of reallocation is a $selection\ effect$

Lentz/Mortensen (2005): model

- Continuous time $t \ge 0$
- Representative household

$$U = \int_0^\infty e^{-\rho t} \log C_t \, dt, \qquad \rho > 0$$

• Expenditure $E_t = P_t C_t$ satisfies intertemporal Euler equation

$$\frac{\dot{E}_t}{E_t} = r_t - \rho$$

• Choose $E_t = 1$ as numeraire, then $r_t = \rho$

$$g_t = \frac{\dot{C}_t}{C_t} = -\frac{\dot{P}}{P_t}$$

Quality ladder

• Instantaneous utility

$$\log C_t = \int_0^1 \log \left[\sum_{k=0}^{J_t(j)} z_t(j,k) x_t(j,k)\right] dj$$

from $j \in [0, 1]$ horizontal varieties, each of which comes in $k \in \{0, 1, \dots, J_t(j)\}$ vintages of increasing quality

• Random quality increments

$$z_t(j,k) = \prod_{k'=0}^k q_t(j,k')$$

(determined by π -type of successfully innovating firm)

Pricing

• In equilibrium, only highest quality supplier of product j operates, limit prices to deter entry by follower

$$p = qw, \qquad x = 1/qw$$

with profits

$$\pi = (p - w)x = \frac{q - 1}{q} \in (0, 1)$$

Firms

- Portfolio of $n \in \{0, 1, ...\}$ products
- Profitability $\pi \sim \phi(\pi)$ drawn at firm *entry*, applies to *all products*
- Choose innovation intensity λ per product, total intensity λn
 - cost $c(\lambda)$ labor per product, strictly increasing and convex in λ
 - in general, innovation intensity will vary with π , i.e., $\lambda(\pi)$
- Firm takes as given destruction intensity μ per product

Value of a firm

- Let $V_n(\pi)$ denote value of type π firm with n products
- Bellman equation for firm with n > 0 products

$$rV_n(\pi) = \max_{\lambda} \left[\pi n - wc(\lambda)n + \lambda n(V_{n+1}(\pi) - V_n(\pi)) - \mu n(V_n(\pi) - V_{n-1}(\pi)) \right]$$

• Guess-and-verify that $V_n(\pi)$ is linear in n

$$V_n(\pi) = v(\pi)n$$

for some $v(\pi) > 0$ to be determined

Value of a firm

• So value $v(\pi)$ per product satisfies

$$(r+\mu)v(\pi) = \max_{\lambda} \left[\pi - wc(\lambda) + \lambda v(\pi)\right]$$

• Equivalently

$$v(\pi) = \max_{\lambda} \left[\frac{\pi - wc(\lambda)}{r + \mu - \lambda} \right], \qquad \lambda(\pi) = \operatorname*{argmax}_{\lambda} \left[\frac{\pi - wc(\lambda)}{r + \mu - \lambda} \right]$$

with first order condition for innovation intensity

 $wc'(\lambda) = v(\pi)$

• From envelope condition, $v'(\pi) > 0$ so $\lambda'(\pi) > 0$ too

- Let $M_n(\pi)$ denote steady-state measure of firms of size n
- For n > 1 we have the steady-state balance condition

$$(\lambda(\pi) + \mu)nM_n(\pi) = \lambda(\pi)(n-1)M_{n-1}(\pi) + \mu(n+1)M_{n+1}(\pi)$$

• For n = 1 we have

$$(\lambda(\pi) + \mu)M_1(\pi) = \eta\phi(\pi) + \mu 2M_2(\pi)$$

where η is the equilibrium entry rate (to be determined) and $\phi(\pi)$ is the measure of entering firms that draw π (exogenous)

• Finally, since only n = 1 firms are at risk of exit

 $\eta\phi(\pi) = \mu M_1(\pi)$

• Rearranging, we have for n = 1 firms

$$M_1(\pi) = \frac{\eta}{\mu} \phi(\pi)$$

• So for size n = 2 firms

$$M_2(\pi) = \frac{1}{2\mu} [(\lambda(\pi) + \mu) M_1(\pi) - \eta \phi(\pi)] = \frac{\eta \lambda(\pi)}{2\mu^2} \phi(\pi)$$

• And so on, by induction, for any n

$$M_n(\pi) = \frac{\eta \lambda(\pi)^{n-1}}{n\mu^n} \phi(\pi), \qquad n = 1, 2, \dots$$

• Total measure of type π firms

$$M(\pi) := \sum_{n=1}^{\infty} M_n(\pi)$$
$$= \sum_{n=1}^{\infty} \frac{\eta \lambda(\pi)^{n-1}}{n\mu^n} \phi(\pi) = \eta \frac{\phi(\pi)}{\lambda(\pi)} \sum_{n=1}^{\infty} \frac{1}{n} \left(\frac{\lambda(\pi)}{\mu}\right)^n$$
$$= \eta \frac{\phi(\pi)}{\lambda(\pi)} \log\left(\frac{\mu}{\mu - \lambda(\pi)}\right)$$

• So conditional distribution is given by

$$\frac{M_n(\pi)}{M(\pi)} = \frac{\frac{1}{n} \left(\frac{\lambda(\pi)}{\mu}\right)^n}{\log\left(\frac{\mu}{\mu - \lambda(\pi)}\right)}$$

Again, the log-series distribution, now with type-specific parameter $\lambda(\pi)/\mu\in(0,1)$

• Conditional mean

$$\mathbb{E}[n \mid \pi] = \sum_{n=1}^{\infty} n \frac{M_n(\pi)}{M(\pi)} = \frac{\frac{\lambda(\pi)}{\lambda(\pi) - \mu}}{\log\left(\frac{\mu}{\mu - \lambda(\pi)}\right)}$$

which is increasing in $\lambda(\pi)$ and hence increasing in π

• Total mass of products produced by type π firms

$$K(\pi) := \sum_{n=1}^{\infty} n M_n(\pi) = \frac{\eta}{\mu - \lambda(\pi)} \phi(\pi)$$

with $K(\pi)/\phi(\pi)$ increasing in π and

$$\sum_{\pi} K(\pi) = 1$$

Selection and reallocation

• More profitable firms $\pi' > \pi$ are *over-represented* relative to intrinsic frequency

$$\frac{M_n(\pi')}{M_n(\pi)} - \frac{\phi(\pi')}{\phi(\pi)} = \frac{\phi(\pi')}{\phi(\pi)} \left[\left(\frac{\lambda(\pi')}{\lambda(\pi)}\right)^{n-1} - 1 \right]$$

is positive and increasing in n since $\lambda(\pi') > \lambda(\pi)$ for $\pi' > \pi$

• This 'selection bias' reflects *reallocation* from less to more profitable surviving firms and from exiting to entering

(Of course *all* growth in the model is reallocation of one kind or another, but this term reflects reallocation *across types*)

Entry

- Cost wl_S for Poisson intensity 1 of entering with n = 1 product
- Entry rate η adjusts to satisfy free-entry condition

$$\mathbb{E}[v] = \sum_{\pi} v(\pi)\phi(\pi) \le wl_S$$

with equality whenever $\eta>0$

• Aggregate product destruction rate is then

$$\mu = \eta + \sum_{\pi} \sum_{n=1}^{\infty} n\lambda(\pi) M_n(\pi) = \eta + \sum_{\pi} \lambda(\pi) K(\pi)$$
$$= \eta \sum_{\pi} \frac{\mu}{\mu - \lambda(\pi)} \phi(\pi)$$

Equilibrium

• Constants

 $(w^*\,,\,\eta^*\,,\,\mu^*)$

consistent with firm optimization, i.e., $v(\pi), \lambda(\pi)$, and

(i) free entry condition

$$\sum_{\pi} v(\pi)\phi(\pi) \le w l_S \tag{*}$$

(ii) product destruction rate

$$\mu = \eta \sum_{\pi} \frac{\mu}{\mu - \lambda(\pi)} \phi(\pi) \tag{**}$$

(iii) labor market clearing

$$L_X + L_R + L_S = L$$

• Note: $v(\pi)$ and $\lambda(\pi)$ themselves depend on (w, μ) Compute equilibrium by solving fixed point problem in w, η, μ

$L_X + L_R + L_S = L$

• Labor employed in goods production

$$L_X = \sum_{\pi} \sum_{n=1}^{\infty} l_X(\pi, n) M_n(\pi), \qquad l_X(\pi, n) = \frac{1 - \pi}{w} n$$

• Labor employed in innovation at incumbents

$$L_R = \sum_{\pi} \sum_{n=1}^{\infty} l_R(\pi, n) M_n(\pi), \qquad l_R(\pi, n) = c(\lambda(\pi))n$$

• Labor employed in attempt to enter ('startups')

$$L_S = \eta l_S$$

$L_X + L_R + L_S = L$

• So labor employed in production is

$$L_X = \sum_{\pi} \sum_{n=1}^{\infty} l_X(\pi, n) M_n(\pi) = \sum_{\pi} \frac{1 - \pi}{w} K(\pi)$$

• And labor employed in innovation at incumbents is

$$L_R = \sum_{\pi} \sum_{n=1}^{\infty} l_R(\pi, n) M_n(\pi) = \sum_{\pi} c(\lambda(\pi)) K(\pi)$$

• Which means labor market clearing can be written

$$\eta\left(\sum_{\pi} \left(\frac{1-\pi}{w} + c(\lambda(\pi))\right) \frac{\phi(\pi)}{\mu - \lambda(\pi)} + l_S\right) = L \qquad (***)$$

Growth decomposition

• Aggregate growth is

 $g = \mu \mathbb{E}[\log q]$

the rate of innovation times the average quality improvement

• And in equilibrium, the aggregate innovation rate is

$$\mu = \eta + \sum_{\pi} \lambda(\pi) K(\pi)$$

• Gives growth decomposition

$$g = \eta \mathbb{E}[\log q] + \sum_{\pi} \lambda(\pi) \mathbb{E}[\log q] [K(\pi) - \phi(\pi)] + \sum_{\pi} \lambda(\pi) \mathbb{E}[\log q] \phi(\pi)$$

that is, growth = net entry + selection + residual

selection =
$$\sum_{\pi} \lambda(\pi) \mathbb{E}[\log q] [K(\pi) - \phi(\pi)]$$

• Recall that mass of products accounted for by type π firms is

$$K(\pi) = \frac{\eta}{\mu - \lambda(\pi)} \phi(\pi), \qquad \mu = \eta + \sum_{\pi} \lambda(\pi) K(\pi)$$

• So

$$K(\pi) > \phi(\pi) \qquad \Leftrightarrow \qquad \lambda(\pi) > \sum_{\pi} \lambda(\pi) K(\pi)$$

• Collecting terms and rearranging

selection =
$$\frac{1}{\eta} \left(\sum_{\pi} \lambda(\pi)^2 K(\pi) - \left(\sum_{\pi} \lambda(\pi) K(\pi) \right)^2 \right) \mathbb{E}[\log q] > 0$$

Lentz and Mortensen (2008): overview

- Structural estimation of Klette/Kortum model
 - Danish firm-level panel data on productivity and employment
 - selection effects account for about *half* of aggregate growth

Additional features

• General CES preferences over horizontal varieties $j \in [0, 1]$

$$C_t = \left(\int_0^1 \alpha(j) \left[\sum_k z_t(j,k) x_t(j,k) \right]^{\frac{\sigma-1}{\sigma}} dj \right)^{\frac{\sigma}{\sigma-1}}, \quad \sigma > 0$$

with qualities

$$z_t(j,k) := \prod_{k'=0}^k q_t(j,k')$$

- Random quality steps: on entry, firm learns type $\pi \sim \phi(\pi)$. Firm of type π draws innovation steps $q \sim F(q \mid \pi)$ with higher π 's giving a more favorable distribution (FOSD)
- Random initial demand: each product variety has an initial demand realization $\xi \sim G(\xi)$, independent of q and π , that persistently affects profitability

Overview of steady-state equilibrium

- Let $q^n := (q_1, \ldots, q_n)$ denote vector of quality steps, $\xi^n = (\xi_1, \ldots, \xi_n)$ vector of initial demand conditions
- Lentz/Mortensen derive closed form solution for value function $V_n(\pi, q^n, \xi^n)$ of type π firm
- Again, each type π chooses a different innovation rate $\lambda(\pi)$
- Aggregate innovation rate given by

$$\mu = \eta + \sum_{\pi} \lambda(\pi) K(\pi)$$

where again $K(\pi) = \eta \phi(\pi)/(\mu - \lambda(\pi))$ is mass of products produced by type π firms, η is entry rate (both endogenous)

• Aggregate innovation rate then pins down aggregate growth rate g

Data moments used for structural estimation

	1992	1997		1992	1996
Survivors	4872.000	3628.000	$\operatorname{Cor}[\frac{Y}{N^*}, \frac{Y_{+1}}{N^*}]$	0.476	0.550
	_	(32.132)	+1	(0.088)	(0.091)
E[Y]	26,277.262	31,860.850	$Cor[\frac{Y}{NR}, \Delta \frac{Y}{NR}]$	-0.227	-0.193
	(747.001)	(1031.252)		(0.103)	(0.057)
Med[Y]	13,472.812	16,448.965	$\operatorname{Cor}[\frac{Y}{N^{*}}, \frac{\Delta Y}{Y}]$	-0.120	. ,
	(211.851)	(329.417)		(0.016)	
Std[<i>Y</i>]	52,793.105	64,120.233	$\operatorname{Cor}[\frac{Y}{N^*}, \frac{\Delta N^*}{N^*}]$	0.119	
	(5663.047)	(7741.448)		(0.032)	
E[W]	13,294.479	15,705.087	$E[\frac{\Delta Y}{Y}]$	-0.029	
	(457.466)	(609.595)	- 1 -	(0.008)	
Med[W]	7231.812	8671.939	$\operatorname{Std}\left[\frac{\Delta Y}{V}\right]$	0.550	
	(92.720)	(154.767)	- 1 -	(0.067)	
Std[W]	30,613.801	35,555.701	$Cor[\frac{\Delta Y}{V}, Y]$	-0.061	
	(6750.399)	(8137.541)	- 1	(0.012)	
$E[\frac{Y}{N^*}]$	384.401	432.118	Within	1.015	
	(2.907)	(5.103)		(0.146)	
$Med[\frac{Y}{N^*}]$	348.148	375.739	Between	0.453	
	(1.829)	(2.139)		(0.112)	
$\operatorname{Std}[\frac{Y}{N^*}]$	205.074	305.306	Cross	-0.551	
	(19.633)	(42.491)		(0.196)	
$\operatorname{Cor}[Y, W]$	0.852	0.857	Exit	0.084	
	(0.035)	(0.045)		(0.066)	
$\operatorname{Cor}[\frac{Y}{N^*}, N^*]$	-0.018	-0.026			
	(0.013)	(0.011)			
$\operatorname{Cor}[\frac{Y}{N^*}, Y]$	0.198	0.143			
	(0.036)	(0.038)			

DATA MOMENTS (STANDARD ERRORS IN PARENTHESES)^a

^aUnit of measurement is 1000 DKK. The BHC growth decomposition moments are stated as fractions of total growth.

Model fit

	1992	1997		1992	1996
Survivors	4872.000	3628.000	$\operatorname{Cor}[\frac{Y}{N^*}, \frac{Y_{\pm 1}}{N^*}]$	0.476	0.550
	4872.000	3604.315		0.716	0.718
E[Y]	26,277.262	31,860.850	$\operatorname{Cor}[\frac{Y}{N^*}, \Delta \frac{Y}{N^*}]$	-0.227	-0.193
Med[Y]	13,472.812 13,352.797	16,448.965 15,382.112	$\operatorname{Cor}[\frac{Y}{N^*}, \frac{\Delta Y}{Y}]$	-0.120 -0.094	-0.552
Std[Y]	52,793.105 31,013.660	64,120.233 37,224.359	$\operatorname{Cor}[\frac{Y}{N^*}, \frac{\Delta N^*}{N^*}]$	0.119 0.123	
E[W]	13,294.479 11,772.341	15,705.087 13,735.062	$E[\frac{\Delta Y}{Y}]$	-0.029 0.024	
Med[W]	7231.812 7122.721	8671.939 8154.757	$\operatorname{Std}[\frac{\Delta Y}{Y}]$	0.550 0.771	
Std[W]	30,613.801 14,716.584	35,555.701 17,431.300	$\operatorname{Cor}[\frac{\Delta Y}{Y}, Y]$	$-0.061 \\ -0.042$	
$E[\frac{Y}{N^*}]$	384.401 379.930	432.118 417.041	Within	1.015 0.969	
$Med[\frac{Y}{N^*}]$	348.148 346.456	375.739 378.623	Between	0.453 0.364	
$\operatorname{Std}[\frac{Y}{N^*}]$	205.074 202.134	305.306 223.173	Cross	-0.551 -0.446	
$\operatorname{Cor}[Y, W]$	0.852 0.927	0.857 0.928	Exit	0.084 0.113	
$\operatorname{Cor}[\frac{Y}{N^*}, N^*]$	-0.018 -0.031	-0.026 -0.024			
$\operatorname{Cor}[\frac{Y}{N^*}, Y]$	0.198 0.170	0.143 0.176			

MODEL FIT (DATA IN TOP ROW, ESTIMATED MODEL IN BOTTOM ROW)

Estimated parameters (for $\sigma = 1$)

• Cost function

$$c(\lambda) = c_0 \lambda^{c_1+1}, \qquad c_1 = 3.7$$

• Three-point type distribution

 $\phi(\pi) = (0.85, 0.10, 0.05)$

(and quality $F(q \mid \pi)$ is Weibull with type-specific scale parameter)

• Equilibrium mass of products by type

 $K(\pi) = (0.54, 0.28, 0.18)$

• Innovation intensities

 $\lambda(\pi) = (0.000, 0.055, 0.057), \quad \eta = 0.045 \quad \Rightarrow \quad \mu = 0.071$

Theoretical growth decomposition

• In $\sigma = 1$ case, can derive similar growth decomposition

$$g = \eta \sum_{\pi} \mathbb{E}[\log q \mid \pi] \phi(\pi) + \sum_{\pi} \lambda(\pi) \mathbb{E}[\log q \mid \pi] [K(\pi) - \phi(\pi)] + \sum_{\pi} \lambda(\pi) \mathbb{E}[\log q \mid \pi] \phi(\pi)$$

again, growth = net entry + selection + residual

Selection contributes about half of growth

THE PRODUCTIVITY GROWTH RATE AND ITS COMPONENTS (STD ERROR IN PARENTHESES)^a

	$\sigma = 1.000$	$\sigma = 0.500$	$\sigma = 0.750$	$\sigma = 1.250$
g	0.0139	0.0123	0.0131	0.0144
-	(0.0006)	_	—	_
Decomposition (fraction of g)				
Entry/exit	0.2110	0.1876	0.1959	0.2498
	(0.0149)		_	_
Residual	0.2608	0.2316	0.2425	0.2788
	(0.0128)	_	_	_
Selection	0.5282	0.5809	0.5615	0.4715
	(0.0270)	_	—	_

Next class

- Innovation and firm dynamics, part four
- Embodied technical change and diffusion of new technologies
 - ♦ ATKESON AND KEHOE (2007): Modeling the transition to a new economy: Lessons from two technological revolutions, American Economic Review.