PhD Topics in Macroeconomics

Lecture 6: innovation and firm dynamics, part two

Chris Edmond

 $2nd \ Semester \ 2014$

This lecture

- Klette/Kortum (2004) model of innovation and firm dynamics
 - integrated treatment of quality-ladder model of endogenous growth with firm dynamics
 - seeks to reconcile micro-data on R&D, patenting, and productivity with firm growth, entry, exit

Klette/Kortum: outline

- **1-** Motivating facts on R&D and firm-size
- 2- Individual firm innovation decisions, firm life-cycle
- **3-** Industry equilibrium, firm size distribution
- 4- General equilibrium and aggregate growth

Klette/Kortum: ten stylized facts

- 1. Productivity and R&D positively correlated across firms, but productivity growth not strongly correlated with firm R&D
- 2. Patents and R&D positively correlated, both in the cross-section of firms and over-time for a given firm
- **3.** R&D intensity uncorrelated with firm size
- 4. R&D intensity is highly skewed across firms; many firms do zero R&D
- 5. Differences in R&D intensity across firms very persistent
- 6. Firm-level R&D investment follows geometric random walk
- **7.** Size distribution also highly skewed
- 8. Smaller firms have low survival probability, but those that do survive grow faster than large firms. Among large firms, growth independent of firm size
- 9. Variance of growth rates higher for smaller firms
- 10. Younger firms are small, have low survival probability, but those that survive grow faster than older firms. Market share of a cohort declines with age

Klette/Kortum: model overview

- Each firm is small relative to industry
- Focus on stationary equilibrium with entry and exit
- Firm characterized by portfolio of *n* products
- Firms engage in R&D to produce innovations, drives firm growth
- An innovation allows firm to take over production of a good, old producer priced out of market

Klette/Kortum: model overview

- Continuous time $t \ge 0$
- Firm size *n* follows discrete stochastic *birth/death process*
 - births: new products added when innovation is successful
 - deaths: products lost when competing firms innovate
- No natural size of a firm (unlike Lucas span-of-control)
- Firms can grow unboundedly large, but takes time and luck
- Firms that hit a string of bad luck exit

Innovation technology

• Innovation production function

I = G(R, n)

where I is innovation rate, R is R&D effort, n current size

- Innovation technology $G(\cdot)$ is
 - strictly increasing in R and n(existing knowledge capital facilitates innovation)
 - strictly concave in R
 - homogenous degree one in R and n(neutralizes effect of firm size on innovation)
- Use homogeneity to write as

 $R = nc(\lambda)$

where $\lambda := I/n$ is *innovation intensity* (cf., quality ladders)

Value of a firm

- Product line gives constant profit flow $\pi \in (0, 1)$
- Let V_n denote value of firm with n products, $V_0 = 0$ (exit)
- Bellman equation for firm with n > 0 products

$$rV_n = \max_{\lambda} \left[\pi n - c(\lambda)n + \lambda n(V_{n+1} - V_n) - \mu n(V_n - V_{n-1}) \right]$$

with interest rate r > 0 and product destruction rate $\mu > 0$

• Value is linear in $n, V_n = vn$, for some v > 0 to be determined

$$(r+\mu)v = \max_{\lambda} \left[\pi - c(\lambda) + \lambda v\right]$$

with $c'(\lambda) = v$ for $\lambda > 0$ [or c'(0) > v and $\lambda = 0$]. Innovation intensity *independent of firm size*, increasing in π , decreasing in r, μ

Firm dynamics and life-cycle

- Let $p_n(t; n_0)$ denote prob. firm is size n at t given size n_0 at 0
- Law of motion for $n \ge 1$ products

$$\dot{p}_n(t; n_0) = (n-1)\lambda p_{n-1}(t; n_0) + (n+1)\mu p_{n+1}(t; n_0)$$

$$-n(\lambda+\mu)p_n(t;n_0)$$

• Firms with no products exit, n = 0 is an absorbing state

$$\dot{p}_0(t; n_0) = \mu p_1(t; n_0)$$

Firm dynamics and life-cycle

- Consider a firm of size n = 1. Let $p_n(t) := p_n(t; 1)$
- Solving the system of differential equations gives

$$p_0(t) = \frac{\mu}{\lambda} \gamma(t), \qquad \gamma(t) := \frac{\lambda - \lambda e^{-(\mu - \lambda)t}}{\mu - \lambda e^{-(\mu - \lambda)t}}$$

and

$$p_1(t) = [1 - p_0(t)][1 - \gamma(t)], \quad p_n(t) = p_{n-1}(t)\gamma(t) \text{ for } n = 2, 3, \dots$$

• *Geometric distribution* conditional on survival

$$\frac{p_n(t)}{1 - p_0(t)} = [1 - \gamma(t)]\gamma(t)^{n-1}, \qquad n = 1, 2, \dots$$

- Firms eventually exit, $\lim_{t\to\infty} p_0(t) = 1$
- Geometric distribution with parameter $\gamma(t)$ increasing in t
 - distribution grows stochastically over time
 - conditional on survival, mean and variance of size increase with t
- Firm with n_0 products at t = 0 behaves as if n_0 independent firms each of size 1

 $p_0(t; n_0) = p_0(t)^{n_0}$

Larger firms have smaller exit hazard

Firm age

• Let A denote random age of exiting firm

 $\operatorname{Prob}[A \le a] = p_0(a)$

• Expected life of a firm

$$\mathbb{E}[A] = \int_0^\infty [1 - p_0(a)] \, da = \frac{1}{\lambda} \log\left(\frac{\mu}{\mu - \lambda}\right)$$

increasing in λ , decreasing in μ

• Exit hazard

$$\frac{\dot{p}_0(a)}{1 - p_0(a)} = \mu(1 - \gamma(a))$$

declines with age a, approaches $\mu - \lambda$ as $a \to \infty$

Firm age

• Expected size of firm, conditional on survival

$$\sum_{n=1}^{\infty} n \frac{p_n(a)}{1 - p_0(a)} = \frac{1}{1 - \gamma(a)}$$

increasing with age

• Expected number of products produced by a cohort of size m

$$m\sum_{n=1}^{\infty} np_n(a) = m\frac{1 - p_0(a)}{1 - (\lambda/\mu)p_0(a)}$$

declines with age a if $\mu > \lambda$

Firm growth

- Let N_t denote random size of firm at date $t, G_t := (N_t N_0)/N_0$
- Expected growth conditional on initial size

$$\mathbb{E}\Big[G_t \,\Big|\, N_0 = n\Big] = e^{-(\mu - \lambda)t} - 1$$

independent of initial size (Gibrat's law)

• Variance conditional on initial size

$$\operatorname{Var}\left[G_t \mid N_0 = n\right] = \frac{\lambda + \mu}{n(\mu - \lambda)} e^{-(\mu - \lambda)t} \left[1 - e^{-(\mu - \lambda)t}\right]$$

which declines in initial size

Firm growth

• Expected growth conditional on initial size *and survival*

$$\mathbb{E}\Big[G_t \,\Big|\, N_t > 0, \, N_0 = n\Big] = \frac{e^{-(\mu - \lambda)t}}{1 - p_0(t)^n} - 1$$

which also declines in initial size

• But for firms that are initially large (or have grown very fast) probability of survival to t is high, so Gibrat's law will be good approximation

Aggregation

• Let $M_n(t)$ denote measure of size n firms at date t and let

$$M(t) := \sum_{n=1}^{\infty} M_n(t)$$

• Unit mass of products, each product produced by exactly one firm

$$1 = \sum_{n=1}^{\infty} nM_n(t)$$

• Total innovation rate by incumbents

$$\sum_{n=1}^{\infty} I(n)M_n(t) = \sum_{n=1}^{\infty} \lambda n M_n(t) = \lambda$$

independent of size distribution of firms

Industry equilibrium

• Unlimited potential entrants. If entrants have innovation rate η , total product destruction rate is

 $\mu = \lambda + \eta$

• Pay sunk cost $k_e > 0$ to enter, gives Poisson intensity 1 of entering with n = 1 products. Free entry condition

$$v = k_e$$
, whenever $\eta > 0$

• Recall incumbents' first order condition $c'(\lambda) = v$, so this pins down R&D intensity, λ^* that solves

$$c'(\lambda^*) = v = k_e$$

• Then from the incumbent's Bellman equation

$$(r+\mu)v = (\pi - c(\lambda) + v\lambda) \qquad \Rightarrow \qquad \eta^* = \frac{\pi - c(\lambda^*)}{k_e} - r$$

(or $\eta^* = 0$ if the last is negative, in which case $v < k_e$)

Size distribution

• Law of motion is then, for n = 1

 $\dot{M}_1(t) = \eta + 2\mu M_2(t) - (\lambda + \mu)M_1(t)$

• Similarly for n = 2, 3, ...

$$\dot{M}_n(t) = (n-1)\lambda M_{n-1}(t) + (n+1)\mu M_{n+1}(t) - n(\lambda+\mu)M_n(t)$$

• And, by our adding up condition, the total measure M(t) follows $\dot{M}(t) = \eta - \mu M_1(t)$

Size distribution

- For stationary distribution, set time derivatives to zero and solve
- From the adding up condition

$$M_1 = \eta/\mu$$

• Plugging into the law of motion for n = 1 and solving for M_2

$$M_2 = ((\lambda + \mu)M_1 - \eta)/2\mu = \lambda \eta/(2\mu^2)$$

• And so on, by induction

$$M_n = \frac{\lambda^{n-1}\eta}{n\mu^n} = \frac{\theta}{n} \left(\frac{1}{1+\theta}\right)^n, \qquad \theta := \eta/\lambda$$

(for $\lambda > 0, \eta > 0$)

Size distribution

• Total mass of firms

$$M = \sum_{n=1}^{\infty} M_n = \sum_{n=1}^{\infty} \frac{\theta}{n} \left(\frac{1}{1+\theta}\right)^n = \theta \log\left(\frac{1+\theta}{\theta}\right)$$

• So finally, size distribution $P_n := M_n/M$ is given by

$$P_n = \frac{(1/(1+\theta))^n}{n\log((1+\theta)/\theta)}$$

the *logarithmic* or *log-series* distribution with parameter $1/(1+\theta)$

• Endogenously skewed size distribution. Mean given by

$$\sum_{n=1}^{\infty} nP_n = \frac{1/\theta}{\log((1+\theta)/\theta)}$$

which is decreasing in θ

- when θ small, some firms have time to get very large
- when θ large, entry dominates and there are many n = 1 firms

General equilibrium

- Horizontal varieties $j \in [0, 1]$
- Inelastic supply of aggregate labor

 $L = L_X + L_S + L_R$

 L_X producing goods, L_S in research at 'startups' trying to enter, L_R in research at incumbent firms

- Labor requirements for research
 - l_S researchers for size 0 firm (entrant) to innovate at rate 1 (i.e., sunk entry cost is $k_e = w l_S$ for w to be determined)
- $l_R(\lambda)$ researchers for size 1 firm (incumbent) to innovate at rate λ (i.e., innovation cost function is $c(\lambda) = w l_R(\lambda)$ for each n)

assumed strictly increasing, strictly convex in λ

Stochastic quality ladders

- Each innovation (by new or incumbent) is *quality improvement* to randomly drawn variety $j \in [0, 1]$
- Improvements arrive with endogenous Poisson intensity μ
- Let $J_t(j)$ denote *number of improvements* that have hit j at time t, this is Poisson with intensity μt
- Let z(j,k) denote the *quality* of the k'th vintage of variety j

$$1 =: z(j,0) < z(j,1) < \dots < z(j,k) < \dots < z(j,J_t(j))$$

• Quality step is *random* (not constant)

$$q(j,k) := \frac{z(j,k)}{z(j,k-1)} > 1, \qquad q \sim \operatorname{IID} \Psi(q)$$

Preferences and expenditure

• Representative household

$$U = \int_0^\infty e^{-\rho t} \log C_t \, dt$$

• As before, varieties $j \in [0, 1]$ are imperfect (Cobb-Douglas) substitutes while vintages $k \in \{0, \dots, J_t(j)\}$ are perfect substitutes

$$\log C_t = \int_0^1 \log \left[\sum_{k=0}^{J_t(j)} z(j,k) x_t(j,k) \right] dj$$

• In equilibrium only highest quality vintage is sold, limit price

$$p_t(j) = wq_t(j), \qquad q_t(j) := q(j, J_t(j))$$

• Take aggregate expenditure as numeraire, $P_tC_t = E_t = 1$. Then expenditure per j

$$1 = p_t(j)x_t(j) \quad \Rightarrow x_t(j) := x_t(j, J_t(j)) = \frac{1}{wq_t(j)}$$

Profits and income accounting

• Flow profit per variety j

$$\pi_t(j) = (p_t(j) - w)x_t(j) = \frac{q_t(j) - 1}{q_t(j)}$$

- Quality step distribution $\Psi(q)$ implies profit distribution $\Phi(\pi)$ [previous analysis goes through replacing π with mean $\overline{\pi}$]
- Average profits

$$\bar{\pi} = \int_0^1 \left[1 - q_t(j)^{-1} \right] dj = 1 - \int_1^\infty q^{-1} \, d\Psi(q)$$

• Aggregate household income, in steady-state

$$PC = Y = wL + rv$$

Stationary equilibrium

• Constants

 $(r^*, w^*, v^*, \lambda^*, \eta^*)$

such that (i) no further incentive to enter, (ii) incumbents maximize firm value, (iii) household maximizes utility subject to their budget constraint, and (iv) labor market clears

• Entry condition and incumbent's innovation decision

 $v = w l_S = w l'_R(\lambda)$ determines λ^* in terms of l_S

• Since PC = 1 is numeraire, household maximization implies

$$r^* = \rho$$

and then from household budget constraint

$$1 = wL + \rho v = wL + \rho wl_S \qquad \Rightarrow \qquad w^* = \frac{1}{L + \rho l_S}$$

Stationary equilibrium

• Then since $v = wl_S$ by free entry, firm value is

$$v^* = w^* l_S = \frac{l_S}{L + \rho l_S}$$

• Demand for researchers at incumbent firms

$$L_R = l_R(\lambda^*)$$

• Demand for production workers

$$L_X = \frac{1 - \bar{\pi}}{w^*} = (1 - \bar{\pi})(L + \rho l_S)$$

• Demand for startup workers

$$L_S = \eta l_S \qquad \Rightarrow \qquad \eta^* = \frac{L - L_X - L_R}{l_S}$$
$$= \frac{\bar{\pi}L - (1 - \bar{\pi})\rho l_S - l_R(\lambda^*))}{l_S}$$

Can now calculate all other objects of interest

Aggregate growth

• Aggregate rate of innovation

$$\mu^* = \lambda^* + \eta^*$$

• Aggregate growth rate of consumption (and real wage etc)

$$g^* = \mu^* \log \bar{q}, \qquad \log \bar{q} := \int_1^\infty \log q \, d\Psi(q)$$

- Simple comparative statics
 - increasing in labor force L and in average profits $\bar{\pi}$
 - decreasing in impatience ρ and in entry labor requirement l_S

All these calculations presume an 'interior' steady state with entry, i.e., $L_S > 0$.

Next

- Innovation and firm dynamics, part three
- Lentz/Mortensen estimation of Klette/Kortum-style model
 - ♦ LENTZ AND MORTENSEN (2005): Productivity growth and worker reallocation, *International Economic Review*.
 - $\diamond\,$ LENTZ AND MORTENSEN (2008): An empirical model of growth through product innovation, *Econometrica*.