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This lecture

e Review of ‘Schumpeterian’ growth theory

— quality ladders
— endogenous growth via creative destruction

e Appendix: review of some continuous time tools

— continuous time Bellman equations
— Poisson processes



Model overview

Goods are ‘horizontally’ and ‘vertically’ differentiated
Vertical differentiation via quality differences

— higher quality varieties deliver more utility per unit consumption
Quality improvements arrive according to Poisson process

Arrival rate of quality improvements is endogenous

— gives rise to aggregate growth



Quality ladder model

Continuous time ¢t > 0

Representative household
U:/ e " log C, dt, p >0
0

Aggregate consumption C}; depends on

— j € [0, 1] continuum horizontally differentiated varieties
— ke {0,1,...,J¢(y)} discrete vertically differentiated vintages of j

— state-of-the-art vintage J¢(j) for each horizontal variety j

Let z(j, k) denote quality and x¢(j, k) denote quantity of variety j, k



Aggregate consumption

Instantaneous utility

1 Jt(J)
0 Cr = [ og [ 3 2(i kil )] d
0 k=0
Note: imperfect horizontal differentiation (elasticity of subs. = 1)

but perfect vertical differentiation (elasticity of subs. = o)
Let ¢ > 1 denote the size of the quality step, i.e., for each j
2(j,k) =qz(j, k—1) k=1,2,...,J7(7)

Choose physical units for each variety so that z(j,0) = 1 for all j.
Then simply (4, k) = ¢* for all j



Expenditure

Let P; denote aggregate price index associated with C} and let
E, = P,C; denote aggregate expenditure

Let kf(7) denote variety that charges lowest price per unit quality

Demand for variety j, k is then

S
xt(ja k) — <

0 otherwise

Aggregate expenditure satisfies the intertemporal Euler equation

E, C, b,
— = T+ — @ — =T — _



Expenditure

e Let £y = 1 be the numeraire. Then from the Euler equation

C; P,
Sl

e And expenditure on variety j, k is

! if k= k()
pe(g, k)ze (g, k) = <

0 otherwise



Production

e Wage rate w; per unit labor engaged in production

e Flow profits from production of j, k

Wt(ja k) — (pt(ja k) _ wt)xt(ja k)

(i.e., it takes one unit of labor to produce one unit of output, x = 1)

e Inelastic aggregate labor supply L. Labor may be employed in
goods production Lx or in research Lpg

LX+LR:L



Pricing

Consider leader firm with state-of-the-art quality and its closest

follower, one step behind

Leader has quality advantage ¢ > 1 over follower

Leader charges limit price p:(j, k) = quw; to prevent entry

In symmetric equilibrium only the state-of-the-art quality is sold

ki (j) = Ji(7), and all leaders have flow profits

(7, J¢ (7)) = (0e(d, J1(J)) — we)we(J, Je(J)) =



Innovation

Any firm can target any product line in an attempt to improve
state-of-the-art

TECHNOLOGY FOR INNOVATING: cost cA > 0 units of labor time
delivers flow probability A dt of successfully innovating to next step
on quality lader, 1 — A dt flow probability of failure

Quality steps a Poisson process with intensity A > 0

Memoryless process: no advantages of incumbency, potential
entrants can immediately build on the state-of-the-art, etc
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Innovation decisions

Let v; denote the value of an incumbent firm (to be determined)

‘Lottery’ delivers v; with flow probability Adt or 0 with flow
probability (1 — Adt), costs wiecAdt (in units of labor)

Expected gain from innovation

vAdt + 0(1 — Adt) — weeA dt

Gives free-entry condition into innovation

v < wec,

with equality whenever A > 0
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Incumbents don’t invest 1in 1nnovation

Will an incumbent try to get two steps ahead? If successtul, charge
price = ¢?w and have sales = 1/q¢*w

Yields flow profits 7% := 1 — (1/¢?). But leader already has flow
profits 7! := 1 — 1/q even if no investment in innovation

Incremental profit for investing incumbent

1 — 1
o= o ()
q q

Incremental profit for investing entrant

— 1
71_1_7_‘_()_(q )>7T2—7T1
q

With free entry, equilibrium ‘cost of capital’ will be too high for
incumbent firms to find it optimal to invest
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Bellman equation for incumbents

e Flow profits 7
e Lose incumbency to successtul innovator with flow probability A dt

e Value v; satisfies continuous time Bellman equation
PU :W—)\Ut—F?'Jt

(no aggregate risk, all idiosyncratic risk perfectly diversified)
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Equilibrium
e We will focus on a stationary equilibrium, constants
(U* : )\* : w*)

e Value for incumbents, from steady-state of Bellman equation

T q—1
V= : T=—
p+ A q

for A\ to be determined

e Labor market clearing
Lx + LR = L

with total labor employed in each sector

Lx =—, and Lr = Ac
qu
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Free entry condition v < wc

e CASE 1: A > 0 (INNOVATION). Then v = we and we can write the
labor market clearing condition

A
o+ )C+)\c:L
qm
or
L
=g P
c q

from which we can then recover v* = 7/(p + A*) and w* = v*/c

o CASE 2: A =0 (NO INNOVATION). Then Lr =0, Lx = L and so
w* =1/qL, v* =m/p

e Steady-state with innovation exists if quality increments
> 1+ p
q PT

(i.e., if large population, low discount rate, or low cost etc)
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Aggregate consumption

Recall aggregate consumption index

1 Jt(J)
log O = /0 log [ Z q" z4(J, k)} dj
k=0

using z(j, k) = ¢* for all j

In equilibrium only latest vintage sold, i.e., x¢(j, k) = 1/qw, for
k = Ji(j) and zero otherwise. Hence

1
log C; = (log q) / 7:5) dj — log(qw)
0
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Aggregate growth

e Use LLN to calculate cross-sectional average

/ ) dj = Bl
where J; is a Poisson process with intensity A*, so
E[J:] = A"t
e Hence in a steady-state with w; = w™*, aggregate growth is

o Ct

= 1 — (log g)\*
z, (log q)

9
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Real wages etc

e In steady state, wage w™ is a constant

e But real wage w* /P, is growing. Recall that

1 =FE;, = P(C;

SO
B G
Pt_Ct_g

Hence real wage is growing at ¢g* too

e All growth is due to quality upgrading
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Aggregate growth

e If interior equilibrium

g = (logg)\* where A

|
N

o |
QD

e So in this case g* is

— increasing in ¢ (directly, and indirectly via A*)
— increasing in L (scale effect)
— increasing in 7 (monopoly profits from successful innovation)

— decreasing in ¢ (barrier to entry/cost of innovation)
— decreasing in p (greater impatience)

e Otherwise, namely if ¢ < 1+ pc/L, then corner equilibrium with
A* = 0 and hence g* = 0 etc
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Next

e Innovation and firm dynamics, part two
e Embedding this in a model of firm dynamics

o KLETTE AND KORTUM (2004): Innovating firms and aggregate
innovation, Journal of Political Economy.

e Integrated treatment of firm heterogeneity and growth via creative
destruction
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Appendix to Lecture 5

Review of continuous time Bellman equations, Poisson processes



Present and flow values

e Consider the present value
e
v(t) = / e P70 () ds, t>0
t
e Differentiating with respect to time ¢

o(t) = /t ) e n(s)] ds + e w(s)| (1)

s=t

= pu(t) — 7 (t)
e Commonly written
pv(t) = 7(t) + 0(t)
and in steady state, naturally v = n/p
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Deterministic control

e Now consider the control problem

v(x — max ooe_p(s_t)wa’;s u(s)) ds
(a(t), 1) = max | (a(s). u(s))ds,  £20

with state variable x, control u, subject to the law of motion
2(t) = g(x(t),u(t)),  =(0) =z given

e Value function satisfies the continuous time Bellman equation

ov ov
pv(x,t) = max [W(az,u) + %g(x, u)} + Fn

where the maximand is the Hamiltonian function
H(x,u,\) =m7(x,u) + Ag(x,u)

with costate variable A = 0v/dx
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Heuristic derivation of the Bellman equation

e Discrete time analogue with period length At > 0, ¢/ = ¢ + At,
¥ = x + Ax satisfies

v(x,t) = max [7’(‘(1‘, u) At +

u

I 4/
1+ pAtv(x X )}

e Multiplying both sides by (1 + pAt) and subtracting v(x, t)

pv(x,t)At = max {’n(a:, w) (1 + pAt)At +v(2', ") — v(z,t)

Uu

e Write out the change in the value function as follows

v(z',t) —v(x,t) =v(@', t") —v(z,t") +v(z,t') —v(x,t)

_ v(z',t') — ’U(x,t’)Ax N v(z,t") —v(x,t)

At
Ax At




Heuristic derivation of the Bellman equation

e Now use the state transition equation Ax = g(x,u)At to write

vz, t') —v(x,t')
Ax

v(z,t') — v(x,t)

At
At

v(z', ) —v(x,t) =

g(z, u)At+

e Plug change in value function back into Bellman equation

v(x' t) —v(x,t')

A

pv(x,t)At =max [ﬂ'(:l?, u) (1 4+ pAt)At +

v(z,t') — v(x,t)
T A

e Divide both sides by At > 0 and take limit as At — 0 to get

At

pv(x,t) = max [W(a:,u) + %g(w, u)}

Lo
ot



Poisson process

Continuous time stochastic process x(t) with x(0) = 0 and

(i) stationary independent increments
(ii) increments have Poisson distribution with intensity A > 0

Increments z(t') — x(t) are independent r.v.’s, for all ¢, ¢’

Increments Az = x(t + At) — z(t) have Poisson distribution

()\At)ke—AAt
k!

Prob|Azx = k] =
(depends only on period length At > 0, independent of actual )

Sample paths are discontinuous, a ‘counting process’



Properties of Poisson process

e Write the distribution of the increment from date s to s + ¢

()\t)ke—kt
k!

Prob[{x(t+s) —x(s)} = k] =
that is, a Poisson distribution with parameter At

e In particular, taking s = 0 (and using x(0) = 0) we simply have

()\t)ke—At
k!

Problz(t) = k| =

® So, using standard properties of the Poisson distribution, the
process x(t) has moments

E[x] = Var[z] = At



Properties of Poisson process

e Probability that Ax = 1 over period of length At is
Prob[Az = 1] = (AAt)e !

e Probability process does not change, Ax = 0, over same period
Prob[Az = 0] = e 4

(note link to exponential distribution...)

® These can be written

Prob|Az = 1] = AAt + o(At)
Prob|Az = 0] =1 — AAt + o(At)

where o(At) /At — 0 as At — 0 and moreover where

Prob[Az > 1] = o(At)



Bellman equation when state is Poisson

e (Consider the value function
o(x(t).1) = E| / PO On(a(s) ds|2(t)],  t>0
4

where z(t) follows a Poisson process with intensity A
e What is the Bellman equation for this problem?

e Discrete time analogue with period length At > 0, t/ =t + At,
v’ = x + Az satisfies

1
1 4+ pAt

v(x,t) = w(x)At + Elv(x',t") | x]



Bellman equation when state is Poisson
e Multiplying both sides by (1 + pAt) and subtracting v(z,t) gives
pv(z, t)At = w(2)At(1 + pAt) + Elv(z', ") —v(z,t)]| 2]
e Again write out the change in the value function

v, 1) —v(x,t) = v, t) —v(z,t) +v(z,t)) —v(x,t)

v(z,t') —v(x,t)
At

e The latter change is deterministic and can be pulled outside of the
expectation, so

At

=v(z',t") —v(z,t") +

pv(z, ) At = (2)At(1 + pAt) + Efv(2’, ) — v(z, t') | 2]
+ U(QZ, t/) o U(Qf,t)
At

At
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Bellman equation when state is Poisson

e Now write out the expectation

oo

Elv(z',t") —v(z,t') | z] = Z [v(x + Az, t") — v(z,t")]Prob[Ax]
Az=0

=  [v(z+0,t") —v(z,t)|Prob[Az = 0]
[v(x +1,t") —v(z,t")]Prob[Az = 1]
|

_|_
+ [v(z + 2,t") — v(z,t')|Prob[Az = 2]
_|_

e Hence for the Poisson process

Elv(z',t")—v(x,t') | 2] = [v(z+1,t+At) —v(z, t+ At)|ANAL+0( At)
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Bellman equation when state is Poisson

e Plug this back into the Bellman equation

pv(x, t) At =7 (x)At(1 4+ pAt)
+ [v(x+ 1,t + At) — v(x, t + At)|]ANAL + o At)
v(z,t") —v(x,t)
At

e Divide both sides by At > 0 and take limit as At — 0 to get

ov
ot

At

po(z,t) = m(x) + AMv(z + 1,1) — v(z, 1)) +

12



Application to quality ladder model

Let z denote number of quality improvements that have occurred
Let V(x,t) denote value function of an incumbent firm

For an incumbent, x matters only if an entrant makes an
imnovation — 1n which case it loses its whole market

In short, write v(t) := V(z,t) and 7w(x) = 7 so long as x remains
unchanged, write V(x 4 1,t) = 0 if entrant innovates, etc

Then we have the Bellman equation from the Lecture 5 notes
pv(t) =7 — M(t) + 0(t)

and in steady-state, naturally v = w/(p + \), i.e., profits
discounted at the risk-adjusted rate p + A
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