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This lecture

• Review of ‘Schumpeterian’ growth theory

– quality ladders

– endogenous growth via creative destruction

• Appendix: review of some continuous time tools

– continuous time Bellman equations

– Poisson processes
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Model overview

• Goods are ‘horizontally’ and ‘vertically’ differentiated

• Vertical differentiation via quality differences

– higher quality varieties deliver more utility per unit consumption

• Quality improvements arrive according to Poisson process

• Arrival rate of quality improvements is endogenous

– gives rise to aggregate growth
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Quality ladder model

• Continuous time t � 0

• Representative household

U =

Z 1

0
e

�⇢t
logCt dt, ⇢ > 0

• Aggregate consumption Ct depends on

– j 2 [0, 1] continuum horizontally differentiated varieties

– k 2 {0, 1, . . . , Jt(j)} discrete vertically differentiated vintages of j

– state-of-the-art vintage Jt(j) for each horizontal variety j

• Let z(j, k) denote quality and xt(j, k) denote quantity of variety j, k
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Aggregate consumption

• Instantaneous utility

logCt =

Z 1

0
log

h Jt(j)X

k=0

z(j, k)xt(j, k)

i
dj

• Note: imperfect horizontal differentiation (elasticity of subs. = 1)
but perfect vertical differentiation (elasticity of subs. = 1)

• Let q > 1 denote the size of the quality step, i.e., for each j

z(j, k) = q z(j, k � 1) k = 1, 2, . . . , J

⇤
t (j)

• Choose physical units for each variety so that z(j, 0) = 1 for all j.
Then simply z(j, k) = q

k for all j
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Expenditure

• Let Pt denote aggregate price index associated with Ct and let
Et = PtCt denote aggregate expenditure

• Let k

⇤
t (j) denote variety that charges lowest price per unit quality

• Demand for variety j, k is then

xt(j, k) =

8
>><

>>:

Et

pt(j, k)
if k = k

⇤
t (j)

0 otherwise

• Aggregate expenditure satisfies the intertemporal Euler equation

˙

Et

Et
= rt � ⇢, ,

˙

Ct

Ct
= rt � ⇢�

˙

Pt

Pt
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Expenditure

• Let Et = 1 be the numeraire. Then from the Euler equation

rt = ⇢ ,
˙

Ct

Ct
= �

˙

Pt

Pt

• And expenditure on variety j, k is

pt(j, k)xt(j, k) =

8
<

:

1 if k = k

⇤
t (j)

0 otherwise
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Production

• Wage rate wt per unit labor engaged in production

• Flow profits from production of j, k

⇡t(j, k) = (pt(j, k)� wt)xt(j, k)

(i.e., it takes one unit of labor to produce one unit of output, x = l)

• Inelastic aggregate labor supply L. Labor may be employed in
goods production LX or in research LR

LX + LR = L
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Pricing

• Consider leader firm with state-of-the-art quality and its closest
follower, one step behind

• Leader has quality advantage q > 1 over follower

• Leader charges limit price pt(j, k) = qwt to prevent entry

• In symmetric equilibrium only the state-of-the-art quality is sold
k

⇤
t (j) = Jt(j), and all leaders have flow profits

⇡t(j, Jt(j)) = (pt(j, Jt(j))� wt)xt(j, Jt(j)) =
q � 1

q

=: ⇡
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Innovation

• Any firm can target any product line in an attempt to improve
state-of-the-art

•
Technology for innovating: cost c� > 0 units of labor time
delivers flow probability � dt of successfully innovating to next step
on quality lader, 1� � dt flow probability of failure

• Quality steps a Poisson process with intensity � > 0

• Memoryless process: no advantages of incumbency, potential
entrants can immediately build on the state-of-the-art, etc
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Innovation decisions

• Let vt denote the value of an incumbent firm (to be determined)

• ‘Lottery’ delivers vt with flow probability � dt or 0 with flow
probability (1� � dt), costs wtc� dt (in units of labor)

• Expected gain from innovation

vt� dt+ 0(1� � dt)� wtc� dt

• Gives free-entry condition into innovation

vt  wtc, with equality whenever � > 0
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Incumbents don’t invest in innovation

• Will an incumbent try to get two steps ahead? If successful, charge
price = q

2
w and have sales = 1/q

2
w

• Yields flow profits ⇡

2
:= 1� (1/q

2
). But leader already has flow

profits ⇡

1
:= 1� 1/q even if no investment in innovation

• Incremental profit for investing incumbent

⇡

2 � ⇡

1
=

1

q

✓
q � 1

q

◆

• Incremental profit for investing entrant

⇡

1 � ⇡

0
=

✓
q � 1

q

◆
> ⇡

2 � ⇡

1

• With free entry, equilibrium ‘cost of capital’ will be too high for
incumbent firms to find it optimal to invest
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Bellman equation for incumbents

• Flow profits ⇡

• Lose incumbency to successful innovator with flow probability � dt

• Value vt satisfies continuous time Bellman equation

⇢vt = ⇡ � �vt + v̇t

(no aggregate risk, all idiosyncratic risk perfectly diversified)
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Equilibrium

• We will focus on a stationary equilibrium, constants

(v

⇤
, �

⇤
, w

⇤
)

• Value for incumbents, from steady-state of Bellman equation

v =

⇡

⇢+ �

, ⇡ =

q � 1

q

for � to be determined

• Labor market clearing

LX + LR = L

with total labor employed in each sector

LX =

1

qw

, and LR = �c
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Free entry condition v  wc
•

Case 1: � > 0 (innovation). Then v = wc and we can write the
labor market clearing condition

(⇢+ �)c

q⇡

+ �c = L

or

�

⇤
= ⇡

L

c

� ⇢

q

from which we can then recover v

⇤
= ⇡/(⇢+ �

⇤
) and w

⇤
= v

⇤
/c

•
Case 2: � = 0 (no innovation). Then LR = 0, LX = L and so
w

⇤
= 1/qL, v⇤ = ⇡/⇢

• Steady-state with innovation exists if quality increments

q > 1 + ⇢

c

L

(i.e., if large population, low discount rate, or low cost etc)
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Aggregate consumption

• Recall aggregate consumption index

logCt =

Z 1

0
log

h Jt(j)X

k=0

q

k
xt(j, k)

i
dj

using z(j, k) = q

k for all j

• In equilibrium only latest vintage sold, i.e., xt(j, k) = 1/qwt for
k = Jt(j) and zero otherwise. Hence

logCt = (log q)

Z 1

0
Jt(j) dj � log(q wt)
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Aggregate growth

• Use LLN to calculate cross-sectional average
Z 1

0
Jt(j) dj = E[Jt]

where Jt is a Poisson process with intensity �

⇤, so

E[Jt] = �

⇤
t

• Hence in a steady-state with wt = w

⇤, aggregate growth is

g

⇤
:=

˙

Ct

Ct
= (log q)�

⇤
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Real wages etc

• In steady state, wage w

⇤ is a constant

• But real wage w

⇤
/Pt is growing. Recall that

1 = Et = PtCt

so

�
˙

Pt

Pt
=

˙

Ct

Ct
= g

⇤

Hence real wage is growing at g

⇤ too

• All growth is due to quality upgrading
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Aggregate growth

• If interior equilibrium

g

⇤
= (log q)�

⇤ where �

⇤
= ⇡

L

c

� ⇢

q

• So in this case g

⇤ is

– increasing in q (directly, and indirectly via �

⇤
)

– increasing in L (scale effect)

– increasing in ⇡ (monopoly profits from successful innovation)

– decreasing in c (barrier to entry/cost of innovation)

– decreasing in ⇢ (greater impatience)

• Otherwise, namely if q < 1 + ⇢c/L, then corner equilibrium with
�

⇤
= 0 and hence g

⇤
= 0 etc
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Next

• Innovation and firm dynamics, part two

• Embedding this in a model of firm dynamics

⇧ Klette and Kortum (2004): Innovating firms and aggregate

innovation, Journal of Political Economy.

• Integrated treatment of firm heterogeneity and growth via creative
destruction
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Appendix to Lecture 5

Review of continuous time Bellman equations, Poisson processes
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Present and flow values

• Consider the present value

v(t) =

Z 1

t

e�⇢(s�t) ⇡(s) ds, t � 0

• Differentiating with respect to time t

v̇(t) =

Z 1

t

h
⇢e�⇢(s�t) ⇡(s)

i
ds + e�⇢(s�t) ⇡(s)

���
s=t

(�1)

= ⇢v(t)� ⇡(t)

• Commonly written

⇢v(t) = ⇡(t) + v̇(t)

and in steady state, naturally v = ⇡/⇢
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Deterministic control
• Now consider the control problem

v(x(t), t) = max

u(·)

Z 1

t

e�⇢(s�t) ⇡(x(s), u(s)) ds, t � 0

with state variable x, control u, subject to the law of motion

ẋ(t) = g(x(t), u(t)), x(0) = x0 given

• Value function satisfies the continuous time Bellman equation

⇢v(x, t) = max

u

h
⇡(x, u) +

@v

@x
g(x, u)

i
+

@v

@t

where the maximand is the Hamiltonian function

H(x, u,�) = ⇡(x, u) + �g(x, u)

with costate variable � = @v/@x
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Heuristic derivation of the Bellman equation

• Discrete time analogue with period length �t > 0, t0 = t+�t,
x0 = x+�x satisfies

v(x, t) = max

u

h
⇡(x, u)�t+

1

1 + ⇢�t
v(x0, t0)

i

• Multiplying both sides by (1 + ⇢�t) and subtracting v(x, t)

⇢v(x, t)�t = max

u

h
⇡(x, u) (1 + ⇢�t)�t+ v(x0, t0)� v(x, t)

i

• Write out the change in the value function as follows

v(x0, t0)� v(x, t) = v(x0, t0)� v(x, t0) + v(x, t0)� v(x, t)

=

v(x0, t0)� v(x, t0)

�x
�x+

v(x, t0)� v(x, t)

�t
�t
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Heuristic derivation of the Bellman equation

• Now use the state transition equation �x = g(x, u)�t to write

v(x0, t0)�v(x, t) =
v(x0, t0)� v(x, t0)

�x
g(x, u)�t+

v(x, t0)� v(x, t)

�t
�t

• Plug change in value function back into Bellman equation

⇢v(x, t)�t =max

u

h
⇡(x, u) (1 + ⇢�t)�t+

v(x0, t0)� v(x, t0)

�x
g(x, u)�t

i

+

v(x, t0)� v(x, t)

�t
�t

• Divide both sides by �t > 0 and take limit as �t ! 0 to get

⇢v(x, t) = max

u

h
⇡(x, u) +

@v

@x
g(x, u)

i
+

@v

@t
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Poisson process

• Continuous time stochastic process x(t) with x(0) = 0 and

(i) stationary independent increments

(ii) increments have Poisson distribution with intensity � > 0

• Increments x(t0)� x(t) are independent r.v.’s, for all t, t0

• Increments �x = x(t+�t)� x(t) have Poisson distribution

Prob[�x = k] =
(��t)ke���t

k!

(depends only on period length �t > 0, independent of actual t)

• Sample paths are discontinuous, a ‘counting process’
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Properties of Poisson process

• Write the distribution of the increment from date s to s+ t

Prob[ {x(t+ s)� x(s)} = k] =
(�t)ke��t

k!

that is, a Poisson distribution with parameter �t

• In particular, taking s = 0 (and using x(0) = 0) we simply have

Prob[x(t) = k] =
(�t)ke��t

k!

• So, using standard properties of the Poisson distribution, the
process x(t) has moments

E[x] = Var[x] = �t
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Properties of Poisson process
• Probability that �x = 1 over period of length �t is

Prob[�x = 1] = (��t)e���t

• Probability process does not change, �x = 0, over same period

Prob[�x = 0] = e���t

(note link to exponential distribution...)

• These can be written

Prob[�x = 1] = ��t+ o(�t)

Prob[�x = 0] = 1� ��t+ o(�t)

where o(�t)/�t ! 0 as �t ! 0 and moreover where

Prob[�x > 1] = o(�t)
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Bellman equation when state is Poisson

• Consider the value function

v(x(t), t) = E
h Z 1

t

e�⇢(s�t)⇡(x(s)) ds
���x(t)

i
, t � 0

where x(t) follows a Poisson process with intensity �

• What is the Bellman equation for this problem?

• Discrete time analogue with period length �t > 0, t0 = t+�t,
x0 = x+�x satisfies

v(x, t) = ⇡(x)�t+
1

1 + ⇢�t
E[v(x0, t0) |x]
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Bellman equation when state is Poisson
• Multiplying both sides by (1 + ⇢�t) and subtracting v(x, t) gives

⇢v(x, t)�t = ⇡(x)�t(1 + ⇢�t) + E[v(x0, t0)� v(x, t) |x]

• Again write out the change in the value function

v(x0, t0)� v(x, t) = v(x0, t0)� v(x, t0) + v(x, t0)� v(x, t)

= v(x0, t0)� v(x, t0) +
v(x, t0)� v(x, t)

�t
�t

• The latter change is deterministic and can be pulled outside of the
expectation, so

⇢v(x, t)�t =⇡(x)�t(1 + ⇢�t) + E[v(x0, t0)� v(x, t0) |x]

+

v(x, t0)� v(x, t)

�t
�t
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Bellman equation when state is Poisson

• Now write out the expectation

E[v(x0, t0)� v(x, t0) |x] =
1X

�x=0

[v(x+�x, t0)� v(x, t0)]Prob[�x]

= [v(x+ 0, t0)� v(x, t0)]Prob[�x = 0]

+ [v(x+ 1, t0)� v(x, t0)]Prob[�x = 1]

+ [v(x+ 2, t0)� v(x, t0)]Prob[�x = 2]

+ . . .

• Hence for the Poisson process

E[v(x0, t0)�v(x, t0) |x] = [v(x+1, t+�t)�v(x, t+�t)]��t+o(�t)
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Bellman equation when state is Poisson

• Plug this back into the Bellman equation

⇢v(x, t)�t =⇡(x)�t(1 + ⇢�t)

+ [v(x+ 1, t+�t)� v(x, t+�t)]��t+ o(�t)

+

v(x, t0)� v(x, t)

�t
�t

• Divide both sides by �t > 0 and take limit as �t ! 0 to get

⇢v(x, t) = ⇡(x) + �(v(x+ 1, t)� v(x, t)) +
@v

@t
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Application to quality ladder model

• Let x denote number of quality improvements that have occurred

• Let V (x, t) denote value function of an incumbent firm

• For an incumbent, x matters only if an entrant makes an

innovation — in which case it loses its whole market

• In short, write v(t) := V (x, t) and ⇡(x) = ⇡ so long as x remains
unchanged, write V (x+ 1, t) = 0 if entrant innovates, etc

• Then we have the Bellman equation from the Lecture 5 notes

⇢v(t) = ⇡ � �v(t) + v̇(t)

and in steady-state, naturally v = ⇡/(⇢+ �), i.e., profits
discounted at the risk-adjusted rate ⇢+ �
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