PhD Topics in Macroeconomics

Lecture 3: firm dynamics, part three

Chris Edmond

 $2nd \ Semester \ 2014$

This lecture

1- Background for discrete state dynamic programming

- Markov chains, review
- numerical integration, review
- using Markov chains to approximate processes with continuous support
- 2- Solving the Hopenhayn model by discrete state dynamic programming
- **3-** Results from simple numerical example

Markov chains

- A finite *Markov chain* is a triple (x, P, f_0) where
 - x is an *n*-vector listing the possible states (outcomes) of the chain
 - P is an $n \times n$ probability transition matrix
 - f_0 is an *n*-vector recording the **initial distribution** over the states
- Restrictions

$$0 \le p_{ij} \le 1$$
, and $\sum_{j=1}^{n} p_{ij} = 1$ for all $i = 1, ..., n$
 $0 \le f_{0,i} \le 1$, and $\sum_{i=1}^{n} f_{0,i} = 1$

Interpretation

- Consider *stochastic process* $\{X_t\}_{t=0}^{\infty}$ induced by a Markov chain
- A realization of X_t takes on the value of one of the states in x
- Elements p_{ij} of the transition matrix P then

$$p_{ij} = \operatorname{Prob}[X_{t+1} = x_j \mid X_t = x_i]$$

• Elements $f_{0,i}$ of the initial distribution

$$f_{0,i} = \operatorname{Prob}[X_0 = x_i]$$

Transitions

• Let the vector f_t be the distribution at time t, with elements

 $f_{t,i} = \operatorname{Prob}[X_t = x_i]$

• Using the transition probabilities gives

$$f_{1,i} = \sum_{j=1}^{n} \operatorname{Prob}[X_1 = x_i | X_0 = x_j] \operatorname{Prob}[X_0 = x_j]$$

:
$$f_{t+1,i} = \sum_{j=1}^{n} \operatorname{Prob}[X_{t+1} = x_i | X_t = x_j] \operatorname{Prob}[X_t = x_j]$$

Transitions

• Collecting these together in matrix notation, we see that

$$f_1 = (P')f_0$$

:
 $f_{t+1} = (P')f_t, \qquad t = 0, 1, ...$

where P' denotes the *transpose* of P

- Evolves according to a *deterministic* difference equation
- Iterating forward from date t = 0 we have

$$f_t = (P')^t f_0$$

Stationary distributions

• Stationary distribution \overline{f} of Markov chain satisfies

$$\bar{f} = P'\bar{f}$$

(i.e., a *steady state* of the difference equation $f_{t+1} = (P')f_t$)

• Writing this as

$$(I - P')\overline{f} = 0$$

we see \overline{f} is an *eigenvector* of P' associated with a *unit-eigenvalue*

• Requirement that $\sum_i \bar{f_i} = 1$ is a normalization of the eigenvector

Uniqueness and stability (sketch)

- Generally P' has n eigenvalues
- Since P is a transition matrix, P' has *at least one* unit-eigenvalue
- But may have *multiple* unit-eigenvalues, hence multiple stationary distributions
- Moreover even if there is a unique stationary distribution, iterates $f_{t+1} = (P')f_t$ may not converge to it
- A sufficient condition for a unique stable stationary distribution is that $0 < p_{ij} < 1$ for all i, j

2×2 example

• Consider two state Markov chain with transition matrix

$$P = \left(\begin{array}{cc} 1-p & p \\ q & 1-q \end{array}\right)$$

• Stationary distribution solves (note the transpose!)

$$\begin{bmatrix} \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} - \begin{pmatrix} 1-p & q \\ p & 1-q \end{pmatrix} \end{bmatrix} \begin{pmatrix} \bar{f}_1 \\ \bar{f}_2 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \end{pmatrix}$$

• Gives

$$\left(\begin{array}{c} \bar{f}_1\\ \bar{f}_2 \end{array}\right) = \left(\begin{array}{c} \frac{q}{p+q}\\ \frac{p}{p+q} \end{array}\right)$$

(e.g., $q \rightarrow 0$ makes state 2 *absorbing* and state 1 *transient*, etc)

Continuous support

- Suppose a realization of X_t is drawn from a continuous distribution with PDF $f_t(x)$
- Intuitively

$$f_{t+1}(x') = \int p(x' \,|\, x) f_t(x) \, dx$$

where p(x' | x) is density for $X_{t+1} = x'$ conditional on $X_t = x$

• Analogous theory of uniqueness, stability etc for stationary distributions $\bar{f}(x)$

AR(1) example

• Suppose $\{X_t\}_{t=0}^{\infty}$ is a linear Gaussian AR(1) process

$$X_{t+1} = (1 - \rho)\mu + \rho X_t + \sigma Z_{t+1}, \qquad Z_{t+1} \sim \text{IID } N(0, 1)$$

• Then

$$p(x' \mid x) = \frac{1}{\sigma} \phi \left(\frac{x' - (1 - \rho)\mu - \rho x}{\sigma} \right)$$

where $\phi(z)$ is the PDF of the standard normal distribution

$$\phi(z) = \frac{1}{\sqrt{2\pi}} e^{-z^2/2}$$

AR(1) example

• If $|\rho| < 1$, then a unique, stable stationary distribution with PDF

$$\bar{f}(x) = \frac{1}{\bar{\sigma}}\phi\left(\frac{x-\mu}{\bar{\sigma}}\right)$$

where

$$\bar{\sigma} = \frac{\sigma}{\sqrt{1 - \rho^2}}$$

Numerical integration (quadrature)

• Consider integral of a function f(x) against weights w(x)

$$I = \int f(x)w(x)\,dx$$

- Often not possible to calculate the integral exactly
- Can approximate the integral value by choosing an appropriate set of *quadrature nodes* x_i and *weights* w_i so that

$$I = \int f(x)w(x) \, dx \approx \sum_{i=1}^{n} f(x_i) \, w_i$$

• Various procedures for choosing nodes x_i and weights w_i (Newton-Cotes, Gaussian, Monte Carlo, etc)

Gaussian quadrature

• Choose nodes x_i and weights w_i to satisfy 2n 'moment conditions'

$$\int x^k w(x) \, dx = \sum_{i=1}^n x_i^k w_i, \qquad k = 0, \dots, 2n - 1$$

(2n nonlinear equations in 2n unknowns, nontrivial but standard routines exist)

- Note: if X is a continuous random variable with PDF w(x) then Gaussian quadrature "discretizes" X, replacing it with n discrete points x_i and a PMF w_i on those discrete points
- The discretized version approximates the continuous version in the sense that the first 2n moments are the same

Gaussian quadrature, 3-point example

• Suppose $w(x) = \phi(x)$, the standard normal density

• Choose 3 nodes and 3 weights to satisfy 6 moments

$$\mathbb{E}[x^0] = 1, \quad \mathbb{E}[x^1] = 0, \quad \mathbb{E}[x^2] = 1,$$

 $\mathbb{E}[x^3] = 0, \quad \mathbb{E}[x^4] = 3, \quad \mathbb{E}[x^5] = 0$

• Solution to system of 6 equations in 6 unknowns is

$$\begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} = \begin{pmatrix} -\sqrt{3} \\ 0 \\ +\sqrt{3} \end{pmatrix}, \qquad \begin{pmatrix} w_1 \\ w_2 \\ w_3 \end{pmatrix} = \begin{pmatrix} 1/6 \\ 2/3 \\ 1/6 \end{pmatrix}$$

Tauchen/Hussey (1991) approximation

- Similarly, can use quadrature to obtain discrete Markov chain approximation to process with continuous support
- Recall density for $X_{t+1} = x'$ conditional on $X_t = x$

 $p(x' \,|\, x)$

• Discretize support of X to n quadrature nodes x_i and replace p(x' | x) by $n \times n$ matrix of transition probabilities

$$p_{ij} = \frac{p(x_j \mid x_i) \frac{w_j}{\omega(x_j)}}{\sum_{j'=1}^n p(x_{j'} \mid x_i) \frac{w_{j'}}{\omega(x_{j'})}}, \qquad i, j = 1, ..., n$$

where w_i are the weights for x_i and $\omega(x)$ is a 'regularity function' that controls the quality of the approximation to higher moments

Tauchen/Hussey (1991) example

• Suppose we want to approximate AR(1) with Markov chain

$$p(x' \mid x) = \frac{1}{\sigma} \phi \left(\frac{x' - (1 - \rho)\mu - \rho x}{\sigma} \right)$$

• Lookup quadrature nodes x_i , weights w_i for normal $N(\mu, \hat{\sigma}^2)$. Set regularity function to

$$\omega(x) = \frac{1}{\hat{\sigma}}\phi\left(\frac{x-\mu}{\hat{\sigma}}\right)$$

• Tauchen/Hussey (1991) advocate $\hat{\sigma} = \sigma$ (innovation std dev). But Floden (2008) advocates that for highly persistent processes

$$\hat{\sigma} = \theta \sigma + (1 - \theta) \bar{\sigma}, \qquad \theta = 1/2 + \rho/4$$

 $(\rho \approx 1 \Rightarrow \text{more weight in tails, better match conditional variance})$

Solving the Hopenhayn model

- Back to firm dynamics ...
- Suppose productivity follows *n*-state Markov chain on a_i with transition probabilities f_{ij}
- Given price p, value function is a n-vector with elements $v_i(p)$, i.e.,

$$v_i(p) := v(a_i, p), \quad \pi_i(p) := \pi(a_i, p), \quad y_i(p) := y(a_i, p), \quad \text{etc}$$

• Bellman equation for incumbent firm is then

$$v_i(p) = \pi_i(p) + \beta \max\left[0, \sum_{j=1}^n v_j(p) f_{ij}\right]$$

Value function iteration

Stacking the values into a vector v, this is a mapping of the form
v = T(v, p)

For given p, find $v^*(p)$ that solves this fixed point problem

• Iterating on T from some initial guess v^0 gives

$$T(v^k, p) = v^{k+1} \to v^*(p)$$
 as $k \to \infty$

Note: will work because T is a *contraction mapping* (it satisfies *Blackwell's sufficient conditions*: monotonicity and discounting)

• In practice, iterate on T until

$$\|v^{k+1} - v^k\| < \epsilon$$

for some pre-specified tolerance $\epsilon > 0$, say $\epsilon = 10^{-6}$

Free entry

- Let $g_i = g(a_i)$ denote PMF of initial distribution over nodes a_i
- Given v(p) that solves incumbent's problem, free entry condition is

$$v^e(p) := \beta \sum_{i=1}^n v_i(p)g_i = k_e$$

whenever there is positive entry, m > 0 (for some parameter values, may have m = 0 in which case $v^e(p) < k_e$, see below)

- Easy to show that $v^e(0) < 0$ and $v^e(p)$ monotone increasing in p, so interior solutions (with m > 0) can be found by *bisection*
- Intuitively, if $v^e(p) > k_e$ then reduce price to discourage entry but if $v^e(p) < k_e$ then increase price to encourage entry

Exit decisions

- Given p^* , we know incumbent value function $v(p^*)$
- Exit threshold $a(p^*)$ then found from

$$a(p^*) = a_{i^*}, \qquad i^* := \min_i \left[\sum_{j=1}^n v_j(p^*) f_{ij} \ge 0\right]$$

All firms with $a_i < a(p^*)$ exit, all firms with $a_i \ge a(p^*)$ continue

• Collect exit decisions into a vector $x(p^*)$ with elements

$$x_i(p^*) = 1 \qquad \text{if } a_i < a(p^*)$$
$$x_i(p^*) = 0 \qquad \text{if } a_i \ge a(p^*)$$

Distribution dynamics

- Let $\mu_{it} = \mu_t(a_i)$ denote mass of firms with productivity a_i at t
- Vector μ_t evolves according to difference equation

$$\mu_{t+1} = \Psi(p^*)\mu_t + m g, \qquad t = 0, 1, \dots$$

where $n \times n$ coefficient matrix $\Psi(p^*)$ has elements

$$\psi_{ij}(p^*) = (1 - x_j(p^*)) f_{ji}, \qquad i, j = 1, ..., n$$

- Mass of firms at node a_i at t+1 depends on transition probabilities and exit decisions of incumbents at t and flow of new entrants
- Stationary distribution

$$\mu = m(I - \Psi(p^*))^{-1}g =: \mu(m, p^*)$$

for some m yet to be determined

Market clearing

- Industry demand curve, exogenous D(p)
- Industry supply curve, endogenous

$$Y(m,p) = \sum_{i=1}^{n} y_i(p)\mu_i(m,p)$$

• We have solved for p^* from free entry condition (supposing m > 0). So now want to find measure of entrants m^* that solves

$$Y(m, p^*) = \sum_{i=1}^{n} y_i(p^*)\mu_i(m, p^*) = D(p^*)$$

Trick: µ(m, p) is linear in m, so write µ(m, p) = m × µ(1, p) and solve for m^{*} as

$$m^* = \frac{D(p^*)}{Y(1,p^*)} = \frac{D(p^*)}{\sum_{i=1}^n y_i(p^*)\mu(1,p^*)}$$

Aside: corner solutions

- What if $m^* = 0$? (no entry)
- Then, in stationary equilibrium, can also be *no exit*
- Stationary distribution of firms just given by stationary distribution of Markov chain

$$\mu_i = \bar{f}_i$$

• Then market clears if

$$Y(p) = \sum_{i=1}^{n} y_i(p)\overline{f_i} = D(p)$$

Solve for p^* (no longer use free-entry condition to determine p^*)

Numerical example

• Suppose preferences and technology

$$y = an^{\alpha}, \qquad D(p) = \bar{D}/p$$

• And that firm productivity follows AR(1) in logs

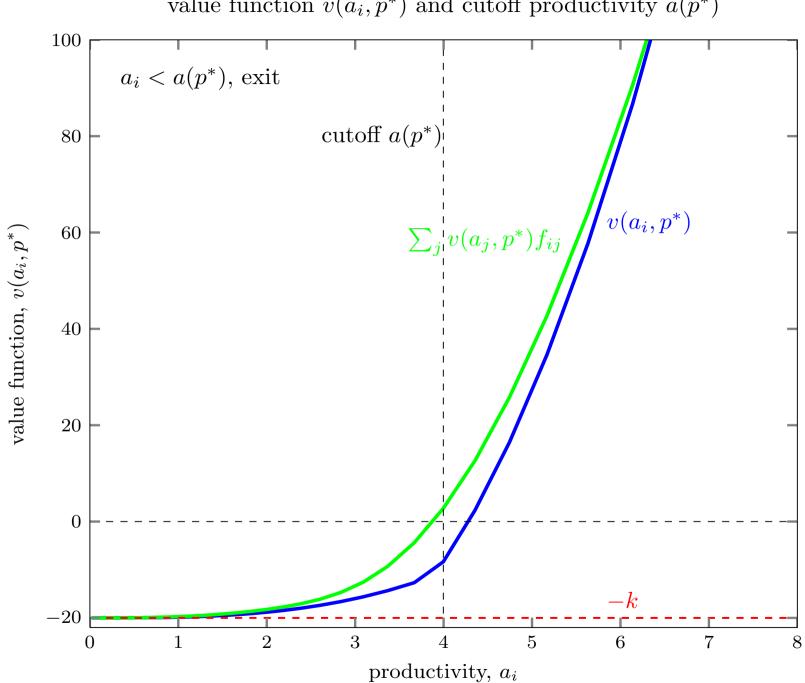
 $\log a_{t+1} = (1-\rho)\log \bar{a} + \rho\log a_t + \sigma\varepsilon_{t+1}$

• Parameter values (period length 5 years, more on this next class)

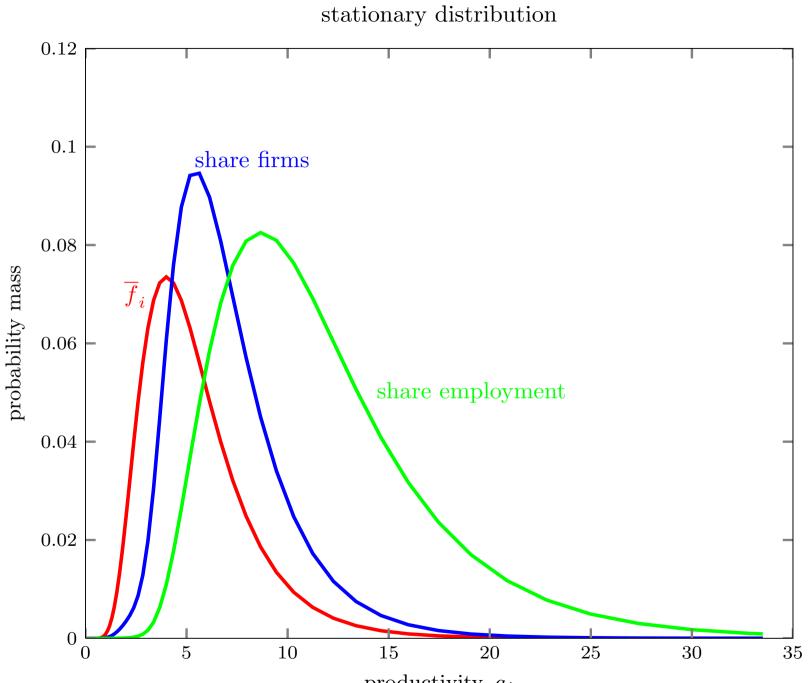
$$\alpha = 2/3, \quad \beta = 0.80, \quad k = 20, \quad k_e = 40$$

 $\log \bar{a} = 1.39, \quad \sigma = 0.20, \quad \rho = 0.9, \quad \bar{D} = 100$

• Approximate AR(1) with Markov chain on 101 nodes



value function $v(a_i, p^*)$ and cutoff productivity $a(p^*)$



productivity, a_i

Hopenhayn Example

price				-	1.0
aggregate output				=	100.0
aggregate productivity				-	1.5
aggregate employment, production				-	66.7
aggregate employment, overhead				-	12.7
aggregate profit				-	20.6
exit/entry rate				=	0.139
gross firm turnover rate				=	0.278
average firm size				10 <u>6</u> 1	66.67
size	<20	<50	<100	<500	rest
share firms	0.20	0.26	0.27	0.25	0.03
share employment	0.02	0.08	0.17	0.47	0.26

Next

- Firm dynamics: basic models, part four
- General equilibrium and a substantive application
- Reading:
 - ♦ HOPENHAYN AND ROGERSON (1993): Job turnover and policy evaluation: A general equilibrium analysis," Journal of Political Economy.
- Nonconvex adjustment costs, a firm's lagged employment is an endogenous state variable