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This lecture

1- Background for discrete state dynamic programming

– Markov chains, review

– numerical integration, review

– using Markov chains to approximate processes with

continuous support

2- Solving the Hopenhayn model by discrete state dynamic
programming

3- Results from simple numerical example
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Markov chains

• A finite Markov chain is a triple (x , P , f0 ) where

x is an n-vector listing the possible states (outcomes) of the chain

P is an n⇥ n probability transition matrix

f0 is an n-vector recording the initial distribution over the states

• Restrictions

0  p

ij

 1, and
nX

j=1

p

ij

= 1 for all i = 1, ..., n

0  f0,i  1, and
nX

i=1

f0,i = 1
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Interpretation

• Consider stochastic process {X
t

}1
t=0 induced by a Markov chain

• A realization of X
t

takes on the value of one of the states in x

• Elements p

ij

of the transition matrix P then

p

ij

= Prob[X
t+1 = x

j

|X
t

= x

i

]

• Elements f0,i of the initial distribution

f0,i = Prob[X0 = x

i

]
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Transitions

• Let the vector f

t

be the distribution at time t, with elements

f

t,i

= Prob[X
t

= x

i

]

• Using the transition probabilities gives

f1,i =

nX

j=1

Prob[X1 = x

i

|X0 = x

j

]Prob[X0 = x

j

]

...

f

t+1,i =

nX

j=1

Prob[X
t+1 = x

i

|X
t

= x

j

]Prob[X
t

= x

j

]
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Transitions

• Collecting these together in matrix notation, we see that

f1 = (P

0
)f0

...
f

t+1 = (P

0
)f

t

, t = 0, 1, ...

where P

0 denotes the transpose of P

• Evolves according to a deterministic difference equation

• Iterating forward from date t = 0 we have

f

t

= (P

0
)

t

f0
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Stationary distributions

• Stationary distribution ¯

f of Markov chain satisfies

¯

f = P

0
¯

f

( i.e., a steady state of the difference equation f

t+1 = (P

0
)f

t

)

• Writing this as

(I � P

0
)

¯

f = 0

we see ¯

f is an eigenvector of P 0 associated with a unit-eigenvalue

• Requirement that
P

i

¯

f

i

= 1 is a normalization of the eigenvector
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Uniqueness and stability (sketch)

• Generally P

0 has n eigenvalues

• Since P is a transition matrix, P 0 has at least one unit-eigenvalue

• But may have multiple unit-eigenvalues, hence multiple stationary
distributions

• Moreover even if there is a unique stationary distribution, iterates
f

t+1 = (P

0
)f

t

may not converge to it

• A sufficient condition for a unique stable stationary distribution is
that 0 < p

ij

< 1 for all i, j

8



2⇥ 2 example

• Consider two state Markov chain with transition matrix

P =

✓
1� p p

q 1� q

◆

• Stationary distribution solves (note the transpose!)
✓

1 0

0 1

◆
�
✓

1� p q

p 1� q

◆�✓
¯

f1
¯

f2

◆
=

✓
0

0

◆

• Gives
✓

¯

f1
¯

f2

◆
=

 
q

p+q

p

p+q

!

(e.g., q ! 0 makes state 2 absorbing and state 1 transient, etc)
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Continuous support

• Suppose a realization of X
t

is drawn from a continuous
distribution with PDF f

t

(x)

• Intuitively

f

t+1(x
0
) =

Z
p(x

0 |x)f
t

(x) dx

where p(x

0 |x) is density for X

t+1 = x

0 conditional on X

t

= x

• Analogous theory of uniqueness, stability etc for stationary
distributions ¯

f(x)
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AR(1) example

• Suppose {X
t

}1
t=0 is a linear Gaussian AR(1) process

X

t+1 = (1� ⇢)µ+ ⇢X

t

+ �Z

t+1, Z

t+1 ⇠ IID N(0, 1)

• Then

p(x

0 |x) = 1

�

�

✓
x

0 � (1� ⇢)µ� ⇢x

�

◆

where �(z) is the PDF of the standard normal distribution

�(z) =

1p
2⇡

e

�z

2
/2
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AR(1) example

• If |⇢| < 1, then a unique, stable stationary distribution with PDF

¯

f(x) =

1

�̄

�

✓
x� µ

�̄

◆

where

�̄ =

�p
1� ⇢

2
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Numerical integration (quadrature)

• Consider integral of a function f(x) against weights w(x)

I =

Z
f(x)w(x) dx

• Often not possible to calculate the integral exactly

• Can approximate the integral value by choosing an appropriate set
of quadrature nodes x

i

and weights w

i

so that

I =

Z
f(x)w(x) dx ⇡

nX

i=1

f(x

i

)w

i

• Various procedures for choosing nodes x

i

and weights w

i

(Newton-Cotes, Gaussian, Monte Carlo, etc)
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Gaussian quadrature

• Choose nodes x

i

and weights w

i

to satisfy 2n ‘moment conditions’

Z
x

k

w(x) dx =

nX

i=1

x

k

i

w

i

, k = 0, ...., 2n� 1

(2n nonlinear equations in 2n unknowns, nontrivial but standard
routines exist)

•
Note: if X is a continuous random variable with PDF w(x) then
Gaussian quadrature “discretizes” X, replacing it with n discrete
points x

i

and a PMF w

i

on those discrete points

• The discretized version approximates the continuous version in the
sense that the first 2n moments are the same
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Gaussian quadrature, 3-point example

• Suppose w(x) = �(x), the standard normal density

• Choose 3 nodes and 3 weights to satisfy 6 moments

E[x0] = 1, E[x1] = 0, E[x2] = 1,

E[x3] = 0, E[x4] = 3, E[x5] = 0

• Solution to system of 6 equations in 6 unknowns is
0

@
x1

x2

x3

1

A
=

0

@
�
p
3

0

+

p
3

1

A
,

0

@
w1

w2

w3

1

A
=

0

@
1/6

2/3

1/6

1

A
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Tauchen/Hussey (1991) approximation

• Similarly, can use quadrature to obtain discrete Markov chain
approximation to process with continuous support

• Recall density for X

t+1 = x

0 conditional on X

t

= x

p(x

0 |x)

• Discretize support of X to n quadrature nodes x

i

and replace
p(x

0 |x) by n⇥ n matrix of transition probabilities

p

ij

=

p(x

j

|x
i

)

wj

!(xj)P
n

j

0=1 p(xj0 |xi)
wj0

!(xj0 )

, i, j = 1, ..., n

where w

i

are the weights for x

i

and !(x) is a ‘regularity function’

that controls the quality of the approximation to higher moments
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Tauchen/Hussey (1991) example

• Suppose we want to approximate AR(1) with Markov chain

p(x

0 |x) = 1

�

�

✓
x

0 � (1� ⇢)µ� ⇢x

�

◆

• Lookup quadrature nodes x

i

, weights w

i

for normal N(µ, �̂

2
).

Set regularity function to

!(x) =

1

�̂

�

✓
x� µ

�̂

◆

• Tauchen/Hussey (1991) advocate �̂ = � (innovation std dev).
But Floden (2008) advocates that for highly persistent processes

�̂ = ✓� + (1� ✓)�̄, ✓ = 1/2 + ⇢/4

(⇢ ⇡ 1 ) more weight in tails, better match conditional variance)
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Solving the Hopenhayn model

• Back to firm dynamics ...

• Suppose productivity follows n-state Markov chain on a

i

with
transition probabilities f

ij

• Given price p, value function is a n-vector with elements v

i

(p), i.e,

v

i

(p) := v(a

i

, p), ⇡

i

(p) := ⇡(a

i

, p), y

i

(p) := y(a

i

, p), etc

• Bellman equation for incumbent firm is then

v

i

(p) = ⇡

i

(p) + �max

h
0 ,

nX

j=1

v

j

(p) f

ij

i
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Value function iteration
• Stacking the values into a vector v, this is a mapping of the form

v = T (v, p)

For given p, find v

⇤
(p) that solves this fixed point problem

• Iterating on T from some initial guess v

0 gives

T (v

k

, p) = v

k+1 ! v

⇤
(p) as k ! 1

Note: will work because T is a contraction mapping (it satisfies
Blackwell’s sufficient conditions : monotonicity and discounting)

• In practice, iterate on T until

kvk+1 � v

kk < ✏

for some pre-specified tolerance ✏ > 0, say ✏ = 10

�6
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Free entry

• Let g

i

= g(a

i

) denote PMF of initial distribution over nodes a

i

• Given v(p) that solves incumbent’s problem, free entry condition is

v

e

(p) := �

nX

i=1

v

i

(p)g

i

= k

e

whenever there is positive entry, m > 0 (for some parameter
values, may have m = 0 in which case v

e

(p) < k

e

, see below)

• Easy to show that v

e

(0) < 0 and v

e

(p) monotone increasing in p,
so interior solutions (with m > 0) can be found by bisection

• Intuitively, if ve(p) > k

e

then reduce price to discourage entry but
if ve(p) < k

e

then increase price to encourage entry
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Exit decisions

• Given p

⇤, we know incumbent value function v(p

⇤
)

• Exit threshold a(p

⇤
) then found from

a(p

⇤
) = a

i

⇤
, i

⇤
:= min

i

h nX

j=1

v

j

(p

⇤
) f

ij

� 0

i

All firms with a

i

< a(p

⇤
) exit, all firms with a

i

� a(p

⇤
) continue

• Collect exit decisions into a vector x(p

⇤
) with elements

x

i

(p

⇤
) = 1 if a

i

< a(p

⇤
)

x

i

(p

⇤
) = 0 if a

i

� a(p

⇤
)
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Distribution dynamics
• Let µ

it

= µ

t

(a

i

) denote mass of firms with productivity a

i

at t

• Vector µ

t

evolves according to difference equation

µ

t+1 =  (p
⇤
)µ

t

+mg, t = 0, 1, ...

where n⇥ n coefficient matrix  (p⇤) has elements

 

ij

(p

⇤
) = (1� x

j

(p

⇤
)) f

ji

, i, j = 1, ..., n

• Mass of firms at node a

i

at t+1 depends on transition probabilities
and exit decisions of incumbents at t and flow of new entrants

• Stationary distribution

µ = m(I � (p⇤))�1
g =: µ(m, p

⇤
)

for some m yet to be determined

22



Market clearing
• Industry demand curve, exogenous D(p)

• Industry supply curve, endogenous

Y (m, p) =

nX

i=1

y

i

(p)µ

i

(m, p)

• We have solved for p⇤ from free entry condition (supposing m > 0).
So now want to find measure of entrants m

⇤ that solves

Y (m, p

⇤
) =

nX

i=1

y

i

(p

⇤
)µ

i

(m, p

⇤
) = D(p

⇤
)

•
Trick: µ(m, p) is linear in m, so write µ(m, p) = m⇥ µ(1, p) and
solve for m

⇤ as

m

⇤
=

D(p

⇤
)

Y (1, p

⇤
)

=

D(p

⇤
)P

n

i=1 yi(p
⇤
)µ(1, p

⇤
)
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Aside: corner solutions

• What if m⇤
= 0? (no entry)

• Then, in stationary equilibrium, can also be no exit

• Stationary distribution of firms just given by stationary
distribution of Markov chain

µ

i

=

¯

f

i

• Then market clears if

Y (p) =

nX

i=1

y

i

(p)

¯

f

i

= D(p)

Solve for p

⇤ (no longer use free-entry condition to determine p

⇤)
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Numerical example

• Suppose preferences and technology

y = an

↵

, D(p) =

¯

D/p

• And that firm productivity follows AR(1) in logs

log a

t+1 = (1� ⇢) log ā+ ⇢ log a

t

+ �"

t+1

• Parameter values (period length 5 years, more on this next class)

↵ = 2/3, � = 0.80, k = 20, k

e

= 40

log ā = 1.39, � = 0.20, ⇢ = 0.9,

¯

D = 100

• Approximate AR(1) with Markov chain on 101 nodes
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v(ai, p
⇤
)

P
j v(aj , p

⇤
)fij

�k

cuto↵ a(p

⇤
)

ai < a(p

⇤
), exit
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v
a
l
u
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u
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i
o
n
,
v(
a i
,p

⇤
)

value function v(ai, p
⇤
) and cuto↵ productivity a(p

⇤
)
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Next

• Firm dynamics: basic models, part four

• General equilibrium and a substantive application

• Reading:

⇧ Hopenhayn and Rogerson (1993): Job turnover and policy

evaluation: A general equilibrium analysis,” Journal of Political

Economy.

• Nonconvex adjustment costs, a firm’s lagged employment is an
endogenous state variable

29


