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This lecture

1- Background for discrete state dynamic programming

— Markov chains, review

— numerical integration, review

— using Markov chains to approximate processes with
continuous support

2- Solving the Hopenhayn model by discrete state dynamic
programming

3- Results from simple numerical example



Markov chains
e A finite Markov chain is a triple (x, P, fo) where

r is an n-vector listing the possible states (outcomes) of the chain
P is an n X n probability transition matrix

fo is an n-vector recording the initial distribution over the states

e Restrictions

and sz-j =1 foralle=1,....n
j=1

n
0 S fO,i S 1, and Z fO,i =1
1=1



Interpretation

Consider stochastic process { Xt };2, induced by a Markov chain
A realization of X; takes on the value of one of the states in x
Elements p;; of the transition matrix P then

pij = Prob| X1 = x; | X¢ = x4
Elements fo; of the initial distribution

fo.i = Prob| Xy = x;]



Transitions

e Let the vector f; be the distribution at time ¢, with elements
ft.i = Prob|X; = z;]

e Using the transition probabilities gives

fii= Z Prob[X; = z; | Xo = z;] Prob| Xy = z;]
j=1

ft—l—l,’i — Z Prob[Xt+1 = I | X; = :Cj] PI’Ob[Xt — ZC]]
j=1



Transitions

e (Collecting these together in matrix notation, we see that

fi=(P)fo

fir1=(P)fe, t=0,1,..

where P’ denotes the transpose of P
e Evolves according to a deterministic difference equation

e [terating forward from date t = 0 we have

fr = (P")' fo



Stationary distributions

e Stationary distribution f of Markov chain satisfies
f=Pf
(i.e., a steady state of the difference equation fir1 = (P')f; )

e Writing this as
(I-P)f=0
we see f is an eigenvector of P’ associated with a unit-eigenvalue

e Requirement that >, f; = 1 is a normalization of the eigenvector



Uniqueness and stability (sketch)

Generally P’ has n eigenvalues
Since P is a transition matrix, P’ has at least one unit-eigenvalue

But may have multiple unit-eigenvalues, hence multiple stationary
distributions

Moreover even if there is a unique stationary distribution, iterates
fir1 = (P’ f: may not converge to it

A sufficient condition for a unique stable stationary distribution is
that 0 < p;; <1 forall 7,7



2 X 2 example

e Consider two state Markov chain with transition matrix

P:(l—p p )
g 1-—gq

e Stationary distribution solves (note the transpose!)

(o 0)-C7 2%l (2)=(0)

e (3ives

(Jil): pta
3 'k

(e.g., ¢ — 0 makes state 2 absorbing and state 1 transient, etc)



Continuous support

e Suppose a realization of X; is drawn from a continuous
distribution with PDF f;(x)

e Intuitively
fra(e!) = [ pla! | ) fiw) da
where p(z’ | x) is density for X117 = 2’ conditional on X; = x

e Analogous theory of uniqueness, stability etc for stationary
distributions f(x)
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AR(1) example

e Suppose {X;}:2, is a linear Gaussian AR(1) process

Xt_|_1 = (1 — p),u -+ pXt -+ O'Zt_|_1, Zt_|_1 ~ IID N(O, 1)

e Then
1, (2 —(1- — px
p(x,|x):¢( (L—p)p—p )
o o
where ¢(z) is the PDF of the standard normal distribution
1 2
__ —z°/2
z) = e
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AR(1) example

e If |p| <1, then a unique, stable stationary distribution with PDF

o) = 30 (5

where

0

1—0p

o =
2
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Numerical integration (quadrature)

Consider integral of a function f(x) against weights w(x)

I = /f(a:)w(:c) dx
Often not possible to calculate the integral exactly

Can approximate the integral value by choosing an appropriate set
of quadrature nodes x; and weights w; so that

- / fayol@) e~ Y fl)

Various procedures for choosing nodes x; and weights w;
(Newton-Cotes, Gaussian, Monte Carlo, etc)
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Gaussian quadrature

J

Choose nodes x; and weights w; to satisty 2n ‘moment conditions

/ka(x) dx:Zat,lfwi, k=0,..,2n—1
i=1

(2n nonlinear equations in 2n unknowns, nontrivial but standard
routines exist)

Note: if X is a continuous random variable with PDF w(z) then
Gaussian quadrature “discretizes” X, replacing it with n discrete

points x; and a PMF w; on those discrete points

The discretized version approximates the continuous version in the
sense that the first 2n moments are the same
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Gaussian quadrature, 3-point example

e Suppose w(x) = ¢(x), the standard normal density

e Choose 3 nodes and 3 weights to satisfy 6 moments

1, E[z']=0, E[2%]=1,
E[z3] =0, E[z*]=3, E[z°]=0

e Solution to system of 6 equations in 6 unknowns is

T1 —V3 w1 1/6
X2 — 0 , w9 — 2/3
xs3 +\/§ ws 1/6
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Tauchen/Hussey (1991) approximation

Similarly, can use quadrature to obtain discrete Markov chain
approximation to process with continuous support

Recall density for X;,1 = 2’ conditional on X; = x

p(z' | x)

Discretize support of X to n quadrature nodes x; and replace
p(x’| ) by n X n matrix of transition probabilities

where w; are the weights for z; and w(x) is a ‘reqularity function’
that controls the quality of the approximation to higher moments
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Tauchen/Hussey (1991) example

e Suppose we want to approximate AR(1) with Markov chain

' a) = o (£ P e)

0O

e Lookup quadrature nodes z;, weights w; for normal N (u, 62%).
Set regularity function to

w@»—;¢($;“)

e Tauchen/Hussey (1991) advocate 6 = o (innovation std dev).
But Floden (2008) advocates that for highly persistent processes

=00+ (1—0)0, 0=1/2 + p/4
(p ~ 1 = more weight in tails, better match conditional variance)
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Solving the Hopenhayn model

e Back to firm dynamics ...

e Suppose productivity follows n-state Markov chain on a; with
transition probabilities f;;

e Given price p, value function is a n-vector with elements v;(p), i.e,

vi(p) :==v(a;,p), mi(p) :=m(ai,p), wi(p) :=ylai,p), etc

e Bellman equation for incumbent firm is then

n

v;(p) = m(p) + S max [O, Zvj(p) fw}

j=1
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Value function iteration

e Stacking the values into a vector v, this is a mapping of the form
v="T(v,p)

For given p, find v*(p) that solves this fixed point problem

o Iterating on T from some initial guess v° gives
T (0%, p) = vF Tt = v*(p) as k — o0

Note: will work because T is a contraction mapping (it satisfies
Blackwell’s sufficient conditions: monotonicity and discounting)

e In practice, iterate on 7' until
Hvkﬂ — ka < €

for some pre-specified tolerance € > 0, say € = 107°
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Free entry

e Let g; = g(a;) denote PMF of initial distribution over nodes a;

e Given v(p) that solves incumbent’s problem, free entry condition is

vé(p) == Z vi(p)gi = ke

whenever there is positive entry, m > 0 (for some parameter
values, may have m = 0 in which case v¢(p) < k., see below)

e Easy to show that v°(0) < 0 and v®(p) monotone increasing in p,
so interior solutions (with m > 0) can be found by bisection

e Intuitively, if v¢(p) > k. then reduce price to discourage entry but
if v¢(p) < k. then increase price to encourage entry
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Exit decisions

e Given p*, we know incumbent value function v(p*)

e Exit threshold a(p*) then found from

All firms with a; < a(p*) exit, all firms with a; > a(p*) continue

e Collect exit decisions into a vector z(p*) with elements

1 if a; < a(p”)
:1:@( )=0 if a; > a(p™)
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Distribution dynamics

Let pis = pi(a;) denote mass of firms with productivity a; at t

Vector u; evolves according to difference equation
per1 = V(P ) +my, t=0,1,...

where n X n coefficient matrix ¥(p*) has elements
i (p") = 1= x;(p")) f5e,  HJ=1..n

Mass of firms at node a; at t + 1 depends on transition probabilities
and exit decisions of incumbents at ¢ and flow of new entrants

Stationary distribution

p=m(l —W(p*) " g=: pu(m,p*)
for some m yet to be determined
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Market clearing

Industry demand curve, exogenous D(p)

Industry supply curve, endogenous

= Z Yi(p)

/LZ'(mvp)

We have solved for p* from free entry condition (supposing m > 0).
So now want to find measure of entrants m™ that solves

Trick:

Zyz

solve for m™ as

m

*_

- Y(1,pY)

D(p*)

)i (m, p*) = D(p*)

p(m, p) is linear in m, so write pu(m,p)

D(p*)

T ()1, p)
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Aside: corner solutions
What if m* =07 (no entry)
Then, in stationary equilibrium, can also be no exit

Stationary distribution of firms just given by stationary
distribution of Markov chain

i = fi

Then market clears if
Y(p) =) wilp)fi=D(p)
i=1

Solve for p* (no longer use free-entry condition to determine p*)
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Numerical example

Suppose preferences and technology
y=an®,  D(p)=D/p
And that firm productivity follows AR(1) in logs
loga;11 = (1 —p)loga+ ploga; + oepr1
Parameter values (period length 5 years, more on this next class)

a=2/3, B=080, k=20, k=40

loga =1.39, ¢=0.20, p=0.9, D =100

Approximate AR(1) with Markov chain on 101 nodes

25



value function, v(a;, p”)

100

80

60

40

20

value function v(a;, p*) and cutoff productivity a(p*)

a; < a(p*), exit

cutoff a(p*),

productivity, a;




probability mass

0.12

0.1

0.08

0.06

0.04

0.02

stationary distribution

=l

share firms

share employment

15 20

productivity, a;



Hopenhayn Example

price

aggregate output

aggregate productivity

aggregate employment, production
aggregate employment, overhead
aggregate profit

exit/entry rate
gross firm turnover rate

average firm size ©66.67

size <20 <50 <100 <500 rest

share firms 0.20 0.26 0.27 0.25 0.03
share employment ©.02 ©.08 0.17 0.47 0.26




Next

e Firm dynamics: basic models, part four
e General equilibrium and a substantive application
e Reading:

o HOPENHAYN AND ROGERSON (1993): Job turnover and policy
evaluation: A general equilibrium analysis,” Journal of Political
Economy.

e Nonconvex adjustment costs, a firm’s lagged employment is an
endogenous state variable
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