
B30.3332

Chris Edmond

Endogenous asset market segmentation: interest rate dynamics
Revised: April 4, 2008

This note outlines the response of nominal and real interest rates to money growth shocks in a

model with segmented asset markets. The basic objective is to decompose exogenous changes in

money growth µt into changes in real interest rates rt and expected inflation Et {πt+1}.

Log-linearization of marginal utility

Recall from Note 3 that in the Alvarez, Atkeson, Kehoe (2002) model the level of consumption of

an active household can be written as a function of the current money growth realization c̄(µt).

With CRRA utility the marginal utility of an active household is

U ′(c̄(µt)) = c̄(µt)
−σ, σ > 0 (1)

Let µt follow a stationary stochastic process with long-run mean µ̄ and let µ̂t := log(µt)− log(µ̄)

denote the log-deviation of money growth from its long-run mean. Then log-linearization of the

marginal utility of active households gives

logU ′(c̄(µt))− logU ′(c̄(µ̄)) ≈ −φ(µ̄)µ̂t (2)

with elasticity

φ(µ̄) := σ
∂ log(c̄(µ))

∂ log(µ)

∣∣∣∣
µ=µ̄

(3)

Alvarez, Atkeson and Kehoe (2002) assume that this elasticity is positive, i.e., that increases

in money growth increase the consumption of active households (and reduce the consumption

of inactive households). This is not true in general but does seem to be true for reasonable

parameterizations of the model.

Bond prices and interest rates

Nominal and real interest rates in this model satisfy the usual asset pricing formulas with one

twist: the marginal utility entering the stochastic discount factor is the marginal utility of active

households, not the marginal utility of the representative household. That is, U ′(c̄(µt)) instead of

U ′(Y ).
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The one-period nominal interest rate is therefore

1

1 + it
= βEt

{
U ′(c̄(µt+1))

U ′(c̄(µt))

Pt
Pt+1

}
,

Pt+1

Pt
= µt+1 (4)

(using the fact that velocity is constant so inflation is equal to money growth). Log-linearizing

this we have

− ı̂t ≈ Et {−φ(µ̄)(µ̂t+1 − µ̂t)− µ̂t+1} (5)

or

ı̂t = φ(µ̄)Et {µ̂t+1 − µ̂t}+ Et {µ̂t+1} (6)

This is a log-linearized Fisher equation. The first term on the right hand side is the log-deviation

of the real interest rate, r̂t = φ(µ̄)Et {µ̂t+1 − µ̂t} while the second term is expected inflation

Et {π̂t+1} = Et {µ̂t+1}.

In a basic cash-in-advance economy with a constant aggregate endowment, the real interest rate

would be constant and an increase in money growth would only have an expected inflation effect.

Here, an increase in money growth can also change the real interest rate.

Yield curve. Similarly the price of bonds of any maturity n ≥ 1 is given by

qnt = βnEt

{
U ′(c̄(µt+n))

U ′(c̄(µt))

Pt
Pt+n

}
(7)

Log-linearizing this gives

q̂nt ≈ Et

{
−φ(µ̄)(µ̂t+n − µ̂t)−

n∑
j=1

µ̂t+j

}
(8)

So that the yield curve is given by

ı̂nt ≈
1

n
φ(µ̄)Et {µ̂t+n − µ̂t}+

1

n
Et

{
n∑
j=1

µ̂t+j

}
(9)

(using ı̂nt = −q̂nt /n to turn bond prices into yields, both written in log deviations). Given a

stochastic process for µ̂t, it’s straightforward to calculate bond prices and yields at all maturities

n ≥ 1. We’ll now do these calculations for a couple of different stochastic processes for µ̂t.

AR(1) example. Suppose that money growth follows an AR(1) in log-deviations with Gaussian

errors that have constant conditional variance

µ̂t+1 = ρµ̂t + εt+1, εt+1 ∼ IID and N(0, σ2
ε), 0 ≤ ρ < 1 (10)
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Then expected inflation is Et {µ̂t+1} = ρµ̂t and real and nominal interest rates are

r̂t = φ(µ̄)(ρ− 1)µ̂t

ı̂t = [φ(µ̄)(ρ− 1) + ρ]µ̂t

Since ρ < 1 and φ(µ̄) > 0 the coefficient φ(µ̄)(ρ−1) < 0 so that an increase in money growth reduces

real interest rates on impact. Since expected inflation is ρµ̂t, this also means that the covariance

between real interest rates and expected inflation is negative, so this is at least qualitatively

consistent with the evidence in Barr and Campbell (1997).

Does an increase in money growth also reduce nominal interest rates (i.e., produce a liquidity

effect)? It depends on how big the asset market segmentation effect is

dı̂t
dµ̂t

= [φ(µ̄)(ρ− 1) + ρ] < 0⇔ φ(µ̄) >
ρ

1− ρ

If ρ = 0 so that money growth is IID, then any segmentation effect φ(µ̄) > 0 is sufficient to deliver

a liquidity effect because in this case an increase in money growth does not increase expected

inflation. If ρ = 1, then the expected inflation effect will always dominate. Typical univariate

estimates of the autocorrelation ρ are in the range 0.5 or 0.6 for quarterly data which implies we

need something like φ(µ̄) > 1 to get a liquidity effect. Recall that φ(µ̄) is the product of two terms,

σ, the coefficient of relative risk aversion, and the elasticity of active household’s consumption to

money growth. So high risk aversion helps generate a liquidity effect as does a large elasticity

of active household’s consumption to money growth. Also φ(µ̄) depends on the long run money

growth rate µ̄ and for large enough µ̄ it will be the case that φ(µ̄) → 0. This is because high

inflation increases the incentive to pay the fixed cost and be active, but if every household is active

the consumption of active households is just c̄(µt) = Y all µt and so money growth ceases to have

any redistributive effect. In short, in economies with high inflation/money growth we ought to

find that the segmentation effect is small and dominated by the Fisher expected inflation effect.

This rationalizes the ‘stylized fact’ that the non-neutrality of money is ‘non-linear’ in the average

level of money growth. That is, in countries with higher average inflation rates, the Fisher effect

tends to be dominant so that an increase in the money supply merely raises expected inflation

and nominal interest rates without changing real rates, but in countries with low average inflation

rates, the Fisher effect is more modest and increases in the money supply can, at least in the the

short run, decrease real and nominal interest rates.

How do interest rates on bonds of longer maturities respond to a money growth shock? Recall

that in log deviations yields are given by

ı̂nt =
1

n
φ(µ̄)Et {µ̂t+n − µ̂t}+

1

n
Et

{
n∑
j=1

µ̂t+j

}
(11)
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Since money growth is an AR(1) we have Et{µ̂t+n} = ρnµ̂t and also

Et

{
n∑
j=1

µ̂t+j

}
=

n∑
j=1

Et{µ̂t+j} =
n∑
j=1

ρjµ̂t =
ρ

1− ρ
(1− ρn)µ̂t

Therefore the yields in log deviations are given by

ı̂nt =
1

n
φ(µ̄)(ρn − 1)µ̂t +

1

n

ρ

1− ρ
(1− ρn)µ̂t =

η(µ̄)

n

1− ρn

1− ρ
µ̂t (12)

where

η(µ̄) := φ(µ̄)(ρ− 1) + ρ

is the response of the one period nominal interest rate ı̂t := ı̂1t to a money growth shock. As

discussed above, there is a liquidity effect if this coefficient η(µ̄) < 0. In either case, the whole

yield curve moves together in the sense that the sign of the response to µ̂t is the same for every

n. The size of the response to µ̂t is not the same, however. Since (1− ρn)/n is strictly decreasing

in n, the biggest response to µ̂t is for n = 1. For large n the response is small. This means that a

money growth shock steepens the yield curve, with (say) short rates falling more than long rates

in response to an increase in money growth (if η(µ̄) < 0). Over time, the money growth impulse

fades away and all yields revert to their long run levels. At what speed do they revert? Since every

yield is a linear function of a single state variable µ̂t and µ̂t has persistence ρ, all yields also have

persistence ρ.

General MA(∞) money growth. Suppose money growth has the general MA representation

µ̂t =
∞∑
j=0

θjεt−j, εt−j ∼ IID and N(0, σ2
ε),

(the AR(1) example being the special case θj = ρj for j = 0, 1, ....). The one-step-ahead forecast

of an MA(∞) is simple

µ̂t+1 = θ0εt+1 + θ1εt+1−1 + θ2εt+1−2 + . . .

so

Et{µ̂t+1} = 0 + θ1εt + θ2εt−1 + · · · =
∞∑
j=1

θjεt+1−j =
∞∑
j=0

θj+1εt−j

The short nominal rate is therefore

ı̂t = φ(µ̄)Et {µ̂t+1 − µ̂t}+ Et {µ̂t+1}

= φ(µ̄)

[
∞∑
j=0

θj+1εt−j −
∞∑
j=0

θjεt−j

]
+
∞∑
j=0

θj+1εt−j

=
∞∑
j=0

[φ(µ̄)(θj+1 − θj) + θj+1]εt−j
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so the short nominal rate is also an MA(∞) which we can write ı̂t =
∑∞

j=0 αjεt−j with coefficients

αj := φ(µ̄)(θj+1 − θj) + θj+1

We can generalize this for all yields by noting that the n-step-ahead forecast of an MA(∞) is

Et{µ̂t+n} =
∞∑
j=n

θjεt+n−j =
∞∑
j=0

θj+nεt−j

and also

Et

{
n∑
j=1

µ̂t+j

}
=

n∑
j=1

Et{µ̂t+j} =
n∑
j=1

∞∑
k=0

θk+jεt−k =
∞∑
j=0

n∑
k=1

θj+kεt−j

Therefore the yields in log deviations are given by

ı̂nt =
1

n
φ(µ̄)Et {µ̂t+n − µ̂t}+

1

n
Et

{
n∑
j=1

µ̂t+j

}

=
1

n
φ(µ̄)

[
∞∑
j=0

θj+nεt−j −
∞∑
j=0

θjεt−j

]
+

1

n

∞∑
j=0

n∑
k=1

θj+kεt−j

so that the yield curve is also an MA(∞) which we can write ı̂nt =
∑∞

j=0 α
n
j εt−j with coefficients

αnj :=
1

n

[
φ(µ̄)(θj+n − θj) +

n∑
k=1

θj+k

]

Notice that this recovers the MA coefficients for the short nominal rate given above when n = 1.

We’ll now use these representations to study the effects of money growth on interest rates when

money growth follows a so-called ‘long memory’ stochastic process.

Aside on long memory/fractionally integrated processes. An integrated process xt has

the lag operator representation

(1− L)dxt = εt

where L is the lag operator Lxt = xt−1 and where εt is white noise. The process xt is said to be

I(d) or ‘integrated of order d’. If d is an integer, then this defines ordinary differences of the form

∆ = 1 − L, for d = 1 etc and the process xt is said to be integrated. If d = 0 then xt is white

noise, if d = 1 then xt is a pure random walk, etc. If d is not an integer the process xt is said to be

fractionally integrated. Such processes are often used in applied work in macro and finance because

they imply autocorrelation functions which decay at hyperbolic rates, slower than the geometric

rates implied by AR processes. To see this note that we can write

xt = (1− L)−dεt
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Using the binomial expansion

(1− L)−d = 1 + dL+
d(d+ 1)

2!
L2 +

d(d+ 1)(d+ 2)

3!
L3 + . . .

we have that xt has a valid MA(∞) representation given by

xt = (1− L)−dεt =

(
1 + dL+

d(d+ 1)

2!
L2 +

d(d+ 1)(d+ 2)

3!
L3 + . . .

)
εt =

∞∑
j=0

θjεt−j

where the coefficients are given by

θj =
1

Γ(d)

Γ(j + d)

Γ(j + 1)
, j = 0, 1, 2, ...

where Γ(z) is Euler’s gamma function Γ(z) :=
∫∞

0
tz−1e−tdt which generalizes the factorial function

z! to non-natural z and has the same recursive property Γ(z + 1) = zΓ(z). This implies the MA

coefficients satisfy the difference equation

θj
θj−1

=
Γ(j + d)

Γ(j + d− 1)

Γ(j)

Γ(j + 1)
=
j + d− 1

j

or

θj =

(
1− 1− d

j

)
θj−1 > 0

(for j ≥ 1 with θ0 := 1).

It turns out that d < 1/2 is required for the process defined this way to be stationary and

d > −1/2 is required for the process to be invertible. Thus in applications we usually restrict

d ∈ (−1/2,+1/2). The order of fractional integration d controls the rate of decay of the MA

coefficients. In particular, the coefficients decay at a rate (1−d)/j which slows down as j increases.

This is the source of the long memory.

Another way to see this is to use the asymptotic approximation

1

Γ(d)

Γ(j + d)

Γ(j + 1)
→ 1

Γ(d)
jd−1, as j →∞

This implies that the MA coefficients exhibit slow hyperbolic decay for large j.

Now back to economics.

Implications of long memory processes for the yield curve. Suppose money growth is

fractionally integrated so that the MA coefficients of the money growth process satisfy the difference

equation

θj =

(
1− 1− d

j

)
θj−1 > 0
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for j ≥ 1 with θ0 := 1. Then the MA coefficients for nominal interest rates are

αj :=

[
−φ(µ̄)

1− d
j

+

(
1− 1− d

j

)]
θj

Notice that for large enough j we have αj = θj > 0 so that the expected inflation effect dominates

for high j. This implies that an increase in money growth will tend to raise the yields on nominal

bonds of long maturity. Since θj > 0 for all j, we have that αj becomes negative if

j < [φ(µ̄) + 1](1− d)

So if the segmentation effect is sufficiently large, αj < 0 for small j. This implies that an increase

in money growth will tend to lower the yields on nominal bonds of short maturity. Putting these

responses together we have the implication that an increase in money growth will tend to raise

long rates and lower short rates. This is a particularly strong form of yield curve steepening. With

the AR process for money growth we have all yields move in the same direction, albeit with bigger

responses for short rates. With the long memory process we have long yields and short yields move

in different directions. Alvarez, Atkeson and Kehoe (2002) call this ‘twisting’ the yield curve.

In all cases, a large segmentation effect φ(µ̄) is crucial for generating liquidity effects. With the

AR process for money growth, the relative strength of the segmentation effect is the same at all

horizons and there is a liquidity effect if and only if φ(µ̄) is sufficiently large. With the long memory

process for money growth, the relative strength of the segmentation effect is larger at short horizons

and smaller at long horizons. In this case, φ(µ̄) determines for how long the segmentation effect

can dominate the Fisher expected inflation effect.

Chris Edmond
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