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This note reviews the use of a cash-in-advance constraint to introduce a role for money into

an otherwise standard complete markets model. For simplicity, I will work only with exchange

economies. The extension to production economies is straightforward. This exposition is a slight

variant of Lucas (1982, 1984).

1 Closed economy version

Let there be countable dates, t = 0, 1, 2... and let a state of nature be indexed by st. A history is a

vector st = (s0, s1, ..., st) = (st−1, st). The unconditional probability of a history st being realized

as of date zero is denoted ft(s
t). The initial state s0 is known as of date zero.

Agents and endowments. There is a representative household and a government. For exposi-

tional purposes, the representative household is split into a ‘worker’ and a ‘shopper’. The worker

receives a stochastic endowment yt(s
t) of a single non-storable good. The household is prohibited

from directly consuming its own endowment. Instead, the worker sells the endowment for money

which is used by the shopper to buy consumption. More detail on this below.

Markets. There are two markets, an asset market and a goods markets. Households trade money

and nominal bonds in the asset market (i.e., bonds that promise payment in the arbitrary unit

of account, say dollars). The government injects money into the asset market via open market

operations. In the goods market, the household’s shopper uses money to make purchases of the

consumption good and the household’s worker sells their endowment for money.

Money. Let M̂t(s
t) denote the exogenous supply of money with growth rate

µt(s
t) := log

(
M̂t(s

t)

M̂t−1(st−1)

)

Also, let τt(s
t) denote lump-sum taxes. The state st in any period is the realization of money

growth, endowments, and lump-sum taxes

st = (µt, yt, τt)
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Cash-in-advance. In order for money to be valued in equilibrium, we need to impose some kind

of friction that will give rise to its use. The simplest friction involves requiring consumers to buy

goods with money. These are cash-in-advance constraints

Pt(s
t)ct(s

t) ≤Mt(s
t)

In this expression, Pt(s
t) denotes the price level while ct(s

t) denotes aggregate real consumption.

Timing. Each period t, first the state st is realized. Then any bonds due are paid out in the

asset market. Households then trade new bonds and money in the asset market and governments

make their announced open market operations. Once asset market trade is finished, households

‘split’ into workers and shoppers. The workers sell the household’s endowment for money and then

bring that money back home. Simultaneously, the shoppers use the money previously acquired

from asset market transactions to make goods market purchases. The households then jointly

consume the shopper’s purchases. The stock of money held over until the next period is the sum

of unspent money by the shopper plus money brought back by the worker.

Household flow budget constraints. In the asset market, households have money held over

from the previous period plus payments from bond holdings and they can use these funds to buy

more bonds or domestic money or pay taxes, that is

Mt(s
t) + Pt(s

t)τt(s
t) +

∑
s′

qt(s
t, s′)Bt+1(s

t, s′)

≤ Pt−1(s
t−1)yt−1(s

t−1) +Mt−1(s
t−1)− Pt−1(s

t−1)ct−1(s
t−1) +Bt(s

t−1, st)

Household preferences. The representative household has preferences over streams of con-

sumption c := {ct(st)}∞t=0. These preferences are given by the expected utility function

u(c) :=
∞∑
t=0

∑
st

βtU [ct(s
t)]ft(s

t), 0 < β < 1

The household maximizes u(c) by choice of consumption, bond and money holdings subject to its

flow budget constraints and cash-in-advance constraints.

Government flow budget constraints. The government has beginning of the period liabili-

ties B̂t(s
t−1, st) which can be covered by printing money, raising taxes, or by selling more state

contingent bonds

B̂t(s
t−1, st) ≤ M̂t(s

t)− M̂t−1(s
t−1) + Pt(s

t)τt(s
t) +

∑
s′

qt(s
t, s′)B̂t+1(s

t, s′)
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Market clearing. The goods market clears when shoppers buy all of the worker’s sales of the

endowment of goods

ct(s
t) = yt(s

t)

The asset market clears when households buy all government sales of all nominal state contingent

bonds

Bt+1(s
t, s′) = B̂t+1(s

t, s′), all s′

and households hold all money

Mt(s
t) = M̂t(s

t)

Optimization. Let λt(s
t) ≥ 0 denote the multiplier on the relevant household flow budget

constraint and let ηt(s
t) ≥ 0 denote the multiplier on the relevant cash-in-advance constraint. The

interesting first order conditions for the household’s problem include

ct(s
t) : βtU ′[ct(s

t)]ft(s
t) = Pt(s

t)

[
ηt(s

t) +
∑
s′

λt+1(s
t, s′)

]
(1)

Mt(s
t) : λt(s

t) = ηt(s
t) +

∑
s′

λt+1(s
t, s′) (2)

Bt+1(s
t, s′) : λt(s

t)qt(s
t, s′) = λt+1(s

t, s′) (3)

Before combining these conditions with market clearing to solve the model, it’s worth spending a

moment to notice some of the key implications of household optimization.

Marginal utility of a dollar. Combining first order conditions (1) and (2) gives

βt
U ′[ct(s

t)]

Pt(st)
ft(s

t) = λt(s
t)

This is a fundamental relationship.

Nominal pricing kernel. Combining first order conditions (1) and (3) gives the price at st of a

claim to a dollar in state s′ at date t+ 1 in terms of the multipliers on the flow budget constraints,

and hence in terms of marginal utilities. This is the (one-period) nominal pricing kernel

qt(s
t, s′) =

λt+1(s
t, s′)

λt(st)
= β

U ′[ct+1(s
t, s′)]

U ′[ct(st)]

Pt(s
t)

Pt+1(st, s′)

ft+1(s
t, s′)

ft(st)
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The safe nominal interest rate is then

1

1 + it(st)
=

∑
s′

qt(s
t, s′)

=
∑
s′

{
β
U ′[ct+1(s

t, s′)]

U ′[ct(st)]

Pt(s
t)

Pt+1(st, s′)

ft+1(s
t, s′)

ft(st)

}
or more informally

1

1 + it
= Et

{
β
U ′(ct+1)

U ′(ct)

Pt
Pt+1

}
The random variable inside the conditional expectation is the nominal stochastic discount factor

(SDF) for this model. Prices of other nominal bonds of longer maturity can then be constructed

by iterating appropriately on this one-period SDF. More details on this in later notes.

Real pricing kernel. We use the price level Pt(s
t) to convert claims to a dollar into claims to

real consumption so that

qt(s
t, s′)

Pt+1(s
t, s′)

Pt(st)

is the price at st of a claim to a unit of real consumption in state s′ at date t+ 1, the real pricing

kernel. Given this, the real risk free rate is

1

1 + rt(st)
=

∑
s′

qt(s
t, s′)

Pt+1(s
t, s′)

Pt(st)

=
∑
s′

{
β
U ′[ct+1(s

t, s′)]

U ′[ct(st)]

ft+1(s
t, s′)

ft(st)

}
or more informally

1

1 + rt
= Et

{
β
U ′(ct+1)

U ′(ct)

}
The random variable inside the conditional expectation is the real SDF for this model.

Fisher equations and inflation risk premia. In undergraduate discussion of interest rates, we

say that the real interest rate rt is the nominal interest rate it less expected inflation, say Et{πt+1}
where inflation πt+1 := log(Pt+1/Pt) is the rate of growth of the price level. If so, it = rt+Et{πt+1}.
Do we get this Fisher equation in the basic cash-in-advance model? Not quite.

The relationship between real and nominal interest rates is

1

1 + it
= Et

{
β
U ′(ct+1)

U ′(ct)

}
Et

{
Pt
Pt+1

}
+ Covt

{
β
U ′(ct+1)

U ′(ct)
,
Pt
Pt+1

}
or

1

1 + it
=

1

1 + rt
Et

{
Pt
Pt+1

}
+ Covt

{
β
U ′(ct+1)

U ′(ct)
,
Pt
Pt+1

}
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Thus we do not get an exact Fisher equation that mechanically links real interest rates to nominal

interest rates and expected inflation. We also have to account for the covariance between inflation

and the real SDF.

The covariance between inflation and the real SDF

Covt

{
β
U ′(ct+1)

U ′(ct)
,
Pt
Pt+1

}
is an inflation risk premium. In log-linearized (or perfect foresight) versions of cash-in-advance

models, this covariance term will be zero. Specifically, in a perfect foresight version the relationship

between interest rates and inflation is just

1

1 + it
=

1

1 + rt

Pt
Pt+1

or

log(1 + it) = log(1 + rt) + πt+1

Then using the first order approximation log(1 + x) = x for x ≈ 0, we have

it = rt + πt+1

where πt+1 should be interpreted as expected inflation. This is the undergraduate version of

the Fisher equation. Note that in a log-linearized stochastic model we would have instead it =

rt+Et{πt+1}. To get this last expression we are asserting that log Et{Pt/Pt+1} ≈ Et{log(Pt/Pt+1)},
i.e, we are asserting that the variance of inflation is negligible.

Money demand and velocity. A money demand schedule is an equilibrium relationship be-

tween (i) real money, defined asm := M/P , (ii) a measure of the opportunity cost of holding money,

and (iii) a measure of real activity. A typical relationship would be something like m = L(i, c)

where the nominal interest rate measures the opportunity cost of money and real consumption

measures real activity. Note: all of these variables are endogenous.

The cash-in-advance model has very straightforward predictions for money demand. If the cash-

in-advance constraint is binding, then households have

Pt(s
t)ct(s

t) = Mt(s
t)

or real balances

mt(s
t) :=

Mt(s
t)

Pt(st)
= ct(s

t)

so for this model the function L(i, c) just equals c for all i. Unlike some specifications, the demand

for real balances is generally interest inelastic (so long as the cash-in-advance constraint is binding).
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Recall Fisher’s exchange equation, Mv = Pc, which defines the velocity of money per period, again

using consumption as a measure of real transactions. Then this model implies vt(s
t) = 1 for every

date and state if the cash-in-advance constraint binds.

When does the cash-in-advance constraint bind? Clearly, we must have ηt(s
t) > 0. But according

to the first order condition (2), this is just the same as

ηt(s
t) = λt(s

t)−
∑
s′

λt+1(s
t, s′) > 0

So long as the marginal utility of a dollar is positive, λt(s
t) > 0, we can divide both sides by λt(s

t)

to get

ηt(s
t) > 0⇐⇒ ηt(s

t)

λt(st)
= 1−

∑
s′

λt+1(s
t, s′)

λt(st)
> 0

But

1−
∑
s′

λt+1(s
t, s′)

λt(st)
= 1− 1

1 + it(st)
=

it(s
t)

1 + it(st)

So the cash-in-advance constraint is binding if and only if the nominal interest rate i is positive.

Put differently, if the nominal interest rate is positive, money (a safe nominal asset) is dominated

in rate of return by bonds (also a safe nominal asset) because the bonds pay interest while money

does not. Optimizing households will never have any money unspent in the goods market, never

have Pc < M if the nominal interest rate is positive, because they could better use that unspent

money to buy bonds. This is the reason the quantity i/(1 + i) (or just i itself) is often said to be

the opportunity cost of money.

Since short term nominal interest rates are generally positive in the data, this model implies that

the cash-in-advance constraint should essentially always be binding and so velocity should be

constant and real balances insensitive to fluctuations in nominal interest rates. In the data, we see

quite close movements between velocity and nominal interest rates, which is one (amongst many!)

reasons why this model is not an empirical success.

Equilibrium. Anyway, back to the model. Equilibrium allocations are trivial. Goods market

clearing implies ct = yt. This gives the usual consumption-based theory of real asset prices: the

real SDF is βU ′(yt+1)/U
′(yt) and so the real risk free rate is

rt =

{
Et

[
β
U ′(yt+1)

U ′(yt)

]}−1

− 1

If utility is CRRA so that U ′(y) = y−σ for σ > 0 then along a balanced growth path where

gt := log(yt+1/yt)→ g all t the real risk free rate settles down to r ≈ − log(β) + σg as usual. Call

this r the long-run real risk free rate.
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To solve for the associated nominal asset prices we first suppose that the nominal interest rate is

always positive (we’ll see how to check this below). Then the cash-in-advance constraint binds so

that real balances are mt = yt too. Using asset market clearing, the price level is just

Pt =
M̂t

yt

and so inflation, the growth rate of the price level, is πt = µt− gt. Given the solution for the price

level, the nominal SDF is

β
U ′(yt+1)

U ′(yt)

Pt
Pt+1

= β
U ′(yt+1)

U ′(yt)

yt+1

yt

M̂t

M̂t+1

and the nominal risk free rate is

it =

{
Et

[
β
U ′(yt+1)

U ′(yt)

yt+1

yt

M̂t

M̂t+1

]}−1

− 1

Again, if utility is CRRA then along a balanced growth path where gt := log(yt+1/yt) → g and

µt := log(M̂t+1/M̂t)→ µ all t, the nominal risk free rate settles down to ı ≈ − log(β)+(σ−1)g+µ.

Since along such a balanced growth path inflation is π = µ − g, this long-run nominal risk free

rate can also be written ı ≈ r + π, which is a version of the usual undergraduate Fisher equation.

Real/nominal dichotomy and monetary neutrality. This model exhibits a strong dichotomy

between real and nominal variables. Real consumption is equal to the endowment of goods yt. Real

balances are equal to real consumption and hence also equal yt. Real interest rates rt are deter-

mined by the real SDF which is a simple function of time preference and real consumption. Etc.

Nominal variables do not influence real variables at all (though nominal variables do depend on

real ones). The price level Pt is pinned down by the level of the exogenous money supply M̂t and

the level of the endowment of goods yt, that is Pt = M̂t/yt. Inflation is therefore the rate of change

of the money supply less real consumption growth, πt = µt − gt. Nominal interest rates are real

rates plus compensation for inflation (i.e., money growth). In short, this is a model where money

is neutral in the sense that changes in the money supply have no real effects at any horizon.

Checking that the CIA constraint binds. A pedantic detail. Given specified stochastic

processes for the exogenous variables yt and M̂t we can then calculate it using the formula above

and check that it is always positive so that the cash-in-advance constraint is binding as we assumed.

Many popular specifications fail to guarantee that the nominal interest rate is in fact always

positive. To see this, suppose that we have a constant endowment gt = g = 1 all t and that money

growth follows an AR1 with Gaussian shocks

µt+1 = (1− φ)µ+ φµt + εt+1, εt+1 ∼ IID and N(0, σ2
ε), 0 ≤ φ < 1
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Then the nominal SDF is

βEt {exp(−(1− φ)µ− φµt − εt+1)} = β exp(−(1− φ)µ− φµt) exp(σ2
ε/2)

and clearly we can find µt such that the cash-in-advance constraint is slack. In applied work, many

people seem to ignore this and related issues.

Fisher effects and liquidity effects. Back to the big picture (what follows is taken from

Edmond and Weill 2005). The term liquidity effect as used in macroeconomics refers to a fall in

nominal interest rates following an exogenous persistent increase in narrow measures of the money

supply, here M̂t. This is in contrast to the Fisher effect whereby an exogenous, persistent increase

in the money supply is predicted to increase expected inflation and hence nominal interest rates.

Friedman (1968) argues that, in practice, both the liquidity effect and Fisher effect operate: a

persistent increase in the money supply both reduces nominal interest rates and increases expected

inflation so that the real rate also falls. Friedman speculates that following a monetary shock

nominal and real rates may fall below their typical levels for up to a year, but, over time, rates

will then tend to increase before tending to the levels consistent with the inflation generated by

the original monetary shock. Put simply, money is argued to be neutral in the long run but not

neutral in the short run.

Applied macroeconomists have interpreted Friedman (1968) as follows. In the long run real in-

terest rates are determined by ‘fundamentals’ including the rate at which households discount β

and average productivity growth g. Consequently we should expect that long-horizon real interest

rates are relatively stable and are unaffected by transitory monetary disturbances. Long-horizon

nominal interest rates are this stable real rate plus expected inflation. At short horizons, however,

Friedman’s (1968) argument suggests that real and nominal interest rates are both volatile and

positively correlated. His argument also suggests that short-horizon real rates and expected in-

flation are negatively correlated. Barr and Campbell (1997) provide evidence consistent with this

interpretation and Cochrane (1989) provides specific evidence for liquidity effects at short horizons.

More on this in class.

Partial and general equilibrium. Perhaps the easiest way to interpret Friedman (1968) is in

terms of the following scenario. Suppose the monetary authority increases the money supply by

conducting an unexpected outright purchase of bonds. At short horizons, nominal interest rates fall

so that households are willing to hold a smaller quantity of bonds and a larger quantity of money.

But this is only a partial equilibrium effect. As households spend their increased money holdings

on goods, the price level increases and so real balances do not rise as fast as nominal balances.

This general equilibrium effect mitigates the need for the nominal interest rate to fall. In many



Adv. Topics in Macroeconomics: Review of CIA Models 9

simple monetary models, households tend to spend money so ‘fast’ that the general equilibrium

price level effect can completely overturn the partial equilibrium effect.

This general equilibrium price level effect is particularly strong in the basic cash-in-advance model

we’ve been discussing. Suppose gt = 0 all t (so the endowment is a constant) and money growth

µt is IID over time with mean µ. If so, households immediately spend an unexpected increase in

money on a fixed quantity of real goods. This increases the price level one-for-one with the increase

in the money supply so that real balances are unchanged, mt = m all t. In addition, because money

growth is IID, expected inflation is constant Et{πt+1} = π = µ all t. Taken together, constant

real balances and constant expected inflation imply that the money market clears at a constant

nominal interest rate, it = ı all t. In this case, the general equilibrium price level effect completely

offsets the partial equilibrium liquidity effect. If instead monetary growth shocks are persistent (an

AR1, say) then a positive shock increases expected inflation and nominal interest rates increase.

In short: there is a Fisher effect but no liquidity effect.

2 Two-country version

Unless otherwise discussed, the model is the same as above. Except:

Agents and endowments. Now there are two countries. In each country there is a repre-

sentative household and a government. In each country, the representative household is again

comprised of a worker and a shopper. Households in the home country use dollars to purchase

consumption goods, while households in the foreign country use euros to purchase consumption

goods. Home households have a stochastic endowment yt(s
t) of a single non-storable good while

foreign households have an endowment y∗t (s
t) of the same non-storable good.

Markets. There are two markets, an international asset market and an international goods

market. Households trade the two monies and dollar and euro denominated bonds in the asset

market (i.e., bonds that promise payment in the respective currency). The two governments inject

money into the asset market via open market operations. In the goods market, households use

their local currency to make purchases of goods.

Monies. Let M̂t(s
t) denote the exogenous supply of dollars in the home country with growth rate

µt(s
t) and let M∗

t (st) denote the corresponding exogenous supply of euros in the foreign country

with growth rate µ∗t (s
t). Also, let τt(s

t) and τ ∗t (st) denote lump-sum taxes in each country. The

state st in any period is the realization of money growth, endowments, and lump-sum taxes

st = (µt, µ
∗
t , yt, y

∗
t , τt, τ

∗
t )
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Cash-in-advance. For the representative consumer in the home country, we have, as before,

Pt(s
t)ct(s

t) ≤Mt(s
t)

Similarly for the foreign country

P ∗t (st)c∗t (s
t) ≤M∗

t (st)

where P ∗t (st) denotes the price level in euros.

Household flow budget constraints. In the asset market, households have money held over

from the previous period plus payments from bond holdings and they can use these funds to buy

more dollar or euro bonds or domestic money or pay taxes, that is

Mt(s
t) + Pt(s

t)τt(s
t) +

∑
s′

qt(s
t, s′)BH

t+1(s
t, s′) + Et(s

t)
∑
s′

q∗t (s
t, s′)BH∗

t+1(s
t, s′)

≤ Pt−1(s
t−1)yt−1(s

t−1) +Mt−1(s
t−1)− Pt−1(s

t−1)ct−1(s
t−1) +BH

t (st−1, st) + Et(s
t)BH∗

t (st−1, st)

Here Et(z
t) is the nominal exchange rate between euros and dollars. There is an analogous con-

straint for the foreign country, see below.

Government budget constraints. The home government has beginning of the period liabil-

ities B̂t(z
t−1, zt) which can be covered by printing money, raising taxes, or by selling more state

contingent bonds

B̂t(s
t−1, st) ≤ M̂t(s

t)− M̂t−1(s
t−1) + Pt(s

t)τt(s
t) +

∑
s′

qt(s
t, s′)B̂t+1(s

t, s′)

Similarly, the foreign government faces

B̂∗t (s
t−1, st) ≤ M̂∗

t (st)− M̂∗
t−1(s

t−1) + P ∗t (st)τ ∗t (st) +
∑
s′

q∗t (s
t, s′)B̂∗t+1(s

t, s′)

Market clearing. International goods market clearing means

ct(s
t) + c∗t (s

t) = yt(s
t) + y∗t (s

t)

The international asset market clears when home and foreign households buy government sales of

all nominal state contingent bonds

BH
t+1(s

t, s′) +BF
t+1(s

t, s′) = B̂t+1(s
t, s′), all s′

BH∗
t+1(s

t, s′) +BF∗
t+1(s

t, s′) = B̂∗t+1(s
t, s′), all s′
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and households hold all money

Mt(s
t) = M̂t(s

t)

M∗
t (st) = M̂∗

t (st)

Here BH
t+1 denotes home demand for dollar bonds, BF

t+1 denotes foreign demand for dollar bonds,

BH∗
t+1 denotes home demand for euro bonds, and BF∗

t+1 denotes foreign demand for euro bonds. The

aggregate supplies B̂t+1 and B̂∗t+1 are the bond sales of the respective governments.

Optimization. Let λt(s
t) ≥ 0 denote the multiplier on the home country budget constraint and

let ηt(s
t) ≥ 0 denote the multiplier on the cash-in-advance constraint. The interesting first order

conditions for the home country problem include

ct(s
t) : βtU ′[ct(s

t)]ft(s
t) = Pt(s

t)

[
ηt(s

t) +
∑
s′

λt+1(s
t, s′)

]
(4)

Mt(s
t) : λt(s

t) = ηt(s
t) +

∑
s′

λt+1(s
t, s′) (5)

BH
t+1(s

t, s′) : λt(s
t)qt(s

t, s′) = λt+1(s
t, s′) (6)

BH∗
t+1(s

t, s′) : λt(s
t)Et(s

t)q∗t (s
t, s′) = λt+1(s

t, s′)Et+1(s
t, s′) (7)

Before turning to analogous conditions for the foreign country, we first discuss some important

implications that we get from the home country alone.

Dollar and euro pricing kernels. The relationship between the pricing kernel qt(s
t, s′) for

dollar denominated assets and the pricing kernel q∗t (s
t, s′) for euro denominated assets is

qt(s
t, s′) = q∗t (s

t, s′)
Et(s

t)

Et+1(st, s′)

To convert an asset price in euros into an asset price in dollars, we have to take into account

the nominal exchange rate movement between periods. As an example, consider the following

calculation: suppose that I want to ensure that I have a dollar tomorrow in state s′. I could just

buy a bond that pays a dollar in that state, such a bond has price qt(s
t, s′) today. But another way

to get a dollar in state s′ is to buy just the right number of euro bonds so that when I convert euros

to dollars in state s′ I get exactly one dollar. A dollar tomorrow will require 1
Et+1(st,s′)

euros at t+1

which can be bought for
q∗t (st,s′)

Et+1(st,s′)
euros at t. But

q∗t (st,s′)
Et+1(st,s′)

euros at t is equal to q∗t (s
t, s′) Et(st)

Et+1(st,s′)

dollars at t. So I could lay out this many dollars to make sure that I have a dollar in s′ at t + 1.

If there are to be no arbitrage profits, it had better be the case that this is equal to the original

dollar price qt(s
t, s′).
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The safe nominal interest rate on euro bonds is given by

1

1 + i∗t (s
t)

=
∑
s′

q∗t (s
t, s′)

=
∑
s′

{
qt(s

t, s′)
Et+1(s

t, s′)

Et(st)

}
=

∑
s′

{
β
U ′[ct+1(s

t, s′)]

U ′[ct(st)]

Pt(s
t)

Pt+1(st, s′)

Et+1(s
t, s′)

Et(st)

ft+1(s
t, s′)

ft(st)

}
or more informally

1

1 + i∗t
= Et

{
β
U ′(ct+1)

U ′(ct)

Pt
Pt+1

Et+1

Et

}
Notice that this is a relationship between foreign nominal interest rates and the home country

nominal pricing kernel.

Forward exchange rates and covered interest parity. The (one-period) forward exchange

rate is an agreement to purchase one euro at t+ 1 with a number Ft(s
t) of dollars at time t. That

is, the forward rare is a one-period-ahead contract to lock in the spot rate at which you will trade

next period. Given a complete set of state contingent nominal securities, this asset is redundant

and we can figure out how to price it given the spot nominal exchange rate and the nominal interest

rates in each country. An agent can borrow one dollar, use it to buy 1
Et(st)

euros, use those euros

to buy bonds that pay 1 + i∗t (s
t) each for a total of

1+i∗t (st)

Et(st)
at t + 1. If the forward rate is Ft(s

t),

then this total can be turned into a return of [1 + i∗t (s
t)]Ft(st)

Et(st)
dollars for sure at date t + 1. But

we already know that the price of a dollar for sure at date t + 1 is 1
1+it(st)

. If there are to be no

arbitrage profits, it had better be the case that these two prices are the same

1

1 + it(st)
=

1

1 + i∗t (s
t)

Et(s
t)

Ft(st)

The term on the left is the price of a bond that pays a dollar for sure at t+1, the term on the right

is the price of a contract that delivers a dollar for sure via the appropriate euro assets with the

spot exchange rate at which the payment is made at t+ 1 locked in forward. Thus, both contracts

are riskless. This is often written
Ft(s

t)

Et(st)
=

1 + it(s
t)

1 + i∗t (s
t)

and is the so-called covered interest parity (CIP) condition. Given spot rates and the two nominal

interest rates, we can back out the forward rate that is consistent with no arbitrage profits. Em-

pirically, a relationship of this form holds very well (transaction costs in the relevant asset markets

are very very small). Using log(1 + x) = x for x ≈ 0 we have that approximately

ft − et = it − i∗t
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where

ft := log(Ft)

et := log(Et)

are the log forward and log spot nominal exchange rates. The one period log forward/spot differ-

ential is just the interest differential on riskless bonds of one period maturity.

Uncovered interest parity. Undergraduate textbooks introduce the concept of uncovered inter-

est parity (UIP), which states that the expected depreciation between two currencies is determined

by the nominal interest differential

it − i∗t = Et{∆et+1}, ∆et+1 := et+1 − et

As with the Fisher equation in the closed economy model, we do not quite get the undergraduate

UIP result unless we make some additional assumptions. To see this, recall that the safe dollar

bond price is
1

1 + it
= Et

{
β
U ′(ct+1)

U ′(ct)

Pt
Pt+1

}
while the safe euro bond price is

1

1 + i∗t
= Et

{
β
U ′(ct+1)

U ′(ct)

Pt
Pt+1

Et+1

Et

}
Expanding the conditional expectation on the right

1

1 + i∗t
= Et

{
β
U ′(ct+1)

U ′(ct)

Pt
Pt+1

}
Et

{
Et+1

Et

}
+ Covt

{
β
U ′(ct+1)

U ′(ct)

Pt
Pt+1

,
Et+1

Et

}
=

1

1 + it
Et

{
Et+1

Et

}
+ Covt

{
β
U ′(ct+1)

U ′(ct)

Pt
Pt+1

,
Et+1

Et

}
We do not get the textbook uncovered interest parity relationship. Instead, only if the covariance

term is zero and exchange rate changes have small variance do we get

it − i∗t = Et{∆et+1}

This hypothesis says that interest rate differentials merely reflect expected exchange rate move-

ments. For example, if the nominal interest rate in the home country is high, that merely reflects

the expected depreciation of the dollar against the euro. If the covered and uncovered interest

parity conditions both held, we ought to get the relationship

ft − et = Et {∆et+1}

or

ft = Et{et+1}

That is, if both interest parity conditions held, forward rates should be approximately equal to

expected spot rates.
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Forward premium anomaly and exchange rate risk premia. But this relationship certainly

does not hold in the data. One of the major puzzles in international macroeconomics is the so-

called forward premium anomaly. Countries with relatively high interest rates seem to experience

nominal exchange rate appreciations, whereas the covered interest parity condition tells us that

relatively high nominal interest rates, it − i∗t > 0, should go hand in hand with Et {∆et+1} > 0,

that is, with expected nominal exchange rate depreciations. Regressions of the form

et+1 − et = α0 + α1(ft − et) + noise

typically estimate α1 = −0.90 or thereabouts, not the α1 = 1 that we expect from our theory.

(Not even the sign is ‘right’ !). The term

ft − Et{et+1}

is often said to be an exchange rate risk premium. A huge literature, following Fama (1984), studies

the properties of this premium. Much more on this later in the course.

Now let’s turn back to optimization be foreign households. They have the same utility function as

home households, namely

u(c∗) :=
∞∑
t=0

∑
st

βtU [c∗t (s
t)]ft(s

t), 0 < β < 1

Their sequence of flow budget constraints are

Et(s
t)
[
M∗

t (st) + P ∗t (st)τ ∗t (st)
]

+
∑
s′

qt(s
t, s′)BF

t+1(s
t, s′) + Et(s

t)
∑
s′

q∗t (s
t, s′)B∗Ft+1(s

t, s′)

≤ Et(s
t)[P ∗t−1(s

t−1)y∗t−1(s
t−1) +M∗

t−1(s
t−1)− P ∗t−1(s

t−1)c∗t−1(s
t−1)] +BF

t (st−1, st) + Et(s
t)B∗Ft (st−1, st)

where for comparison with the home country I have expressed everything in dollars.

Then we have the first order conditions

c∗t (s
t) : βtU ′[c∗t (s

t)]ft(s
t) = Et(s

t)P ∗t (st)

[
η∗t (s

t) +
∑
s′

λ∗t+1(s
t, s′)

]
(8)

M∗
t (st) : λ∗t (s

t) = η∗t (s
t) +

∑
s′

λ∗t+1(s
t, s′) (9)

BF
t+1(s

t, s′) : λ∗t (s
t)qt(s

t, s′) = λ∗t+1(s
t, s′) (10)

BF∗
t+1(s

t, s′) : λ∗t (s
t)Et(s

t)q∗t (s
t, s′) = λ∗t+1(s

t, s′)Et+1(s
t, s′) (11)

Compare these to their equivalents from the home country.

In particular, the marginal utility of a euro is given by

βt
U ′[c∗t (s

t)]

P ∗t (st)
ft(s

t) = Et(s
t)λ∗t (s

t)
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Real exchange rate. The real exchange rate is defined by

Qt

(
st
)

:= Et(s
t)
P ∗t (st)

Pt(st)

Using the marginal utility of a dollar for the the home country and the marginal utility of a euro

for the foreign country we have

Qt

(
st
)

:= Et(s
t)
P ∗t (st)

Pt(st)
=
U ′[c∗t (s

t)]

U ′[ct(st)]

λt(s
t)

λ∗t (s
t)

Since the growth rate of the Lagrange multipliers is determined by the pricing kernels we also have

qt(s
t, s′) =

λ∗t+1(s
t, s′)

λ∗t (s
t)

=
λt+1(s

t, s′)

λt(st)

So the real depreciation in the exchange rate can be expressed as

Qt+1 (st, s′)

Qt (st)
=
U ′[c∗t+1(s

t, s′)]

U ′[c∗t (s
t)]

U ′[ct(s
t)]

U ′[ct+1(st, s′)]

With complete asset markets, as here, changes in the real exchange rate are equal to changes

in the ratios of marginal utility across foreign and home consumers. If utility is CRRA so that

U ′(c) = c−σ for σ > 0 then

∆qt+1 = σ(∆ log ct+1 −∆ log c∗t+1)

where qt := log(Qt). Real exchange rate growth volatility should be explained by differentials in

consumption growth volatility. In the data, for reasonable assumptions about relative risk aversion,

real exchange rates are much too volatile to be accounted for by the low observed volatility in

national consumption growth rates. Yet another reason why the model is not an empirical success.

Equilibrium in the two-country model (sketch). I say ‘sketch’ because I take as given some

basic results about risk sharing in complete markets economies and don’t re-derive them in this

context. To simplify calculations, specialize to CRRA utility with U ′(c) = c−σ for σ > 0. Denote

the aggregate (global) endowment by

xt(s
t) := yt(s

t) + y∗t (s
t)

To solve the model, note that with complete markets we will have consumption allocations that

are time-invariant functions of the aggregate endowment xt(s
t), written

ct(s
t) = ωxt(s

t)

and

c∗t (s
t) = ω∗xt(s

t)
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where ω > 0 and ω∗ > 0 are constants that depend on the present value of each country’s initial

(date zero) wealth and risk aversion σ. Note ω + ω∗ = 1 so that ct(s
t) + c∗t (s

t) = xt(s
t). These

equilibrium allocations imply consumption growth for each country is equal, ∆ log ct = ∆ log c∗t =

∆ log xt. Therefore the real exchange rate is a constant

∆qt = σ(∆ log ct+1 −∆ log c∗t+1) = σ(∆ log xt −∆ log xt) = 0

To determine the level of the real exchange rate, note that with complete markets we can write

the multipliers on the flow budget constraints in the form

λt(s
t) = λ0β

tft(s
t), and λ∗t (s

t) = λ∗0β
tft(s

t)

for some constants λ0, λ
∗
0. Given this we can use the expressions for the marginal utility of a dollar

and the marginal utility of a euro to write

Ptλ0 = U ′(ct) = (ωxt)
−σ

and

EtP
∗
t λ
∗
0 = U ′(c∗t ) = (ω∗xt)

−σ

Taking the ratios of these two expressions we have

Pt
EtP ∗t

λ0

λ∗0
=
( ω
ω∗

)−σ
or

Q = Et
P ∗t
Pt

=
( ω
ω∗

)σ λ0

λ∗0

Now let’s solve for the nominal variables. If the nominal interest rate is positive in each country,

both cash-in-advance constraints bind and so the price levels are

Pt =
M̂t

ct
=

1

ω

M̂t

xt

and

P ∗t =
M̂∗

t

c∗t
=

1

ω∗
M̂∗

t

xt

With the solutions for the price levels and real consumption we can compute the real and nominal

SDF and solve for the nominal interest rates it and i∗t just as in the closed economy model above.

The calculations imply that the real interest rate is identical in each country (why?)

The price level solutions imply that domestic inflation is given by domestic money growth in excess

of aggregate endowment growth and similarly foreign inflation is given by foreign money growth

in excess of aggregate endowment growth. Therefore, the inflation differential between domestic

and foreign is

πt − π∗t = µt − µ∗t
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Moreover, since the real exchange rate is constant at Q we can write

Et = Q
Pt
P ∗t

= Q
ω∗

ω

M̂t

M̂∗
t

The level of the nominal exchange rate is a constant times the ratio of the two money supplies and

so the depreciation of the nominal exchange rate is given by the inflation/money growth differential

∆et = µt − µ∗t = πt − π∗t

The two-country cash-in-advance economy also exhibits a strong dichotomy between real and

nominal variables. In particular, here we have the additional implication that the nominal exchange

rate fully adjusts to accommodate changes in the relative money supply. The real exchange rate

is constant, totally unaffected by fluctuations in the relative money supplies.

Chris Edmond
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