Monetary Economics

Lecture 8: monetary policy in the new Keynesian model, part one

Chris Edmond

2nd Semester 2014

This class

- Monetary policy in the new Keynesian model, part one
 - efficient allocations, sources of distortion
- Reading: Gali, chapter 4 section 4.1–4.2

This class

- **1-** Efficient allocations
- **2-** Sources of suboptimality in the new Keynesian model
 - digression on profits and taxes
- **3-** Optimal policy

Efficient allocations

• Social planner maximizes utility

$$U(C, N), \qquad C \equiv \left(\int_0^1 C(j)^{\frac{\varepsilon-1}{\varepsilon}} dj\right)^{\frac{\varepsilon}{\varepsilon-1}}$$

subject to the physical resource constraints

$$C(j) = Y(j) = A N(j)^{1-\alpha}$$
, for all $j \in [0, 1]$

and

$$N = \int_0^1 N(j) \, dj$$

• Once again, this is an entirely *static* problem

Efficient allocations

• Lagrangian for this problem

$$L = U\left[\left(\int_0^1 C(j)^{\frac{\varepsilon-1}{\varepsilon}} dj\right)^{\frac{\varepsilon}{\varepsilon-1}}, \int_0^1 N(j) dj\right] + \int_0^1 \lambda(j) [A N(j)^{1-\alpha} - C(j)] dj$$

• First order conditions

$$C(j)$$
 : $U_c(C,N) \left(\frac{C(j)}{C}\right)^{-\frac{1}{\varepsilon}} = \lambda(j)$

and

$$N(j) \qquad : \qquad -U_n(C,N) = (1-\alpha) A N(j)^{-\alpha} \lambda(j)$$

Efficient allocations

• The first order conditions imply that for all j

$$C(j) = C$$

$$N(j) = N$$

(because utility is concave and the goods are perfectly symmetric)

• The aggregates C, N satisfy the marginal rate of substitution equal marginal rate of transformation condition

$$-\frac{U_n(C,N)}{U_c(C,N)} = (1-\alpha)AN^{-\alpha}$$

and the aggregate resource constraint

$$C = AN^{1-\alpha}$$

Suboptimality in the new Keynesian model

- Two sources of suboptimality
 - 1- imperfect competition (firms set markup over marginal cost, lower output)
 - **2-** nominal rigidity
 - (time variation in markups, distorts cross-sectional relative prices)

Decentralized equilibrium with flexible prices

- Imperfect competition but flexible prices
- Gives "natural" output etc underlying the new Keynesian equilibrium
- Reminder

$$-\frac{U_n(C,N)}{U_c(C,N)} = \frac{W}{P}, \qquad P = \frac{\varepsilon}{\varepsilon - 1} \left(\frac{1}{1 - \alpha}\right) \frac{W}{A} \left(\frac{C}{A}\right)^{\frac{\alpha}{1 - \alpha}}$$

Since $C = AN^{1-\alpha}$, markup implies real wage

$$\frac{W}{P} = \frac{\varepsilon - 1}{\varepsilon} (1 - \alpha) A N^{-\alpha}$$

Labor not paid its social marginal product

Decentralized equilibrium with flexible prices

- Can correct markup distortion with tax/subsidy scheme
- Let price received by firm be scaled by tax τ

$$(1-\tau)P = \frac{\varepsilon}{\varepsilon - 1} \left(\frac{1}{1-\alpha}\right) \frac{W}{A} \left(\frac{C}{A}\right)^{\frac{\alpha}{1-\alpha}}$$

• Implement marginal cost pricing by

$$1 - \tau = \frac{\varepsilon}{\varepsilon - 1} \Leftrightarrow \tau = -\frac{1}{\varepsilon - 1} < 0$$

(a subsidy, makes sense since otherwise output too low)

- For simplicity, suppose constant marginal costs $(\alpha = 0)$
- Profits to producer of variety j are

$$\Pi(j) \equiv \left[P(j) - \frac{W}{A}\right] Y(j)$$

where

$$Y(j) = \left(\frac{P(j)}{P}\right)^{-\varepsilon} Y$$

• With constant optimal markup, simplifies to

$$\Pi = \frac{1}{\varepsilon - 1} \frac{W}{A} Y$$

• Budget constraint of household

 $PC = WN + \Pi$

• In equilibrium, pricing behavior of firms implies

$$PC = \frac{\varepsilon}{\varepsilon - 1} \frac{W}{A}C = \frac{\varepsilon}{\varepsilon - 1} WN$$

• And equilibrium profits are

$$\Pi = \frac{1}{\varepsilon - 1} \frac{W}{A} Y = \frac{1}{\varepsilon - 1} W N$$

• So this all adds up (yay)!

• With tax/subsidy

$$\Pi(j) \equiv \left[(1-\tau)P(j) - \frac{W}{A} \right] Y(j)$$

• When subsidy is $1 - \tau = \varepsilon/(\varepsilon - 1)$, this simplifies to

$$\Pi = \frac{1}{\varepsilon - 1} \frac{W}{A} Y$$

(same as without tax/subsidy, since *net* price unchanged)

• Budget constraint of household, now with lump sum taxes

 $PC = WN + \Pi - T$

• In equilibrium, pricing behavior of firms implies

$$PC = \frac{1}{1 - \tau} \left(\frac{\varepsilon}{\varepsilon - 1}\right) \frac{W}{A}C = WN$$

• Thus

 $T=+\Pi$

• With this subsidy, equilibrium is same as planner's allocation

Distortions due to nominal rigidity

- Calvo pricing implies time-varying average markup \mathcal{M}_t
- Write this as

 $(1-\tau)P_t = \mathcal{M}_t M C_t$

where P_t is price level, MC_t is average marginal cost

• When we eliminate the static imperfect competition distortion with the subsidy $1 - \tau = \mathcal{M}$ we can say

$$\frac{P_t}{MC_t} = \frac{\mathcal{M}_t}{\mathcal{M}}$$

• Define average marginal product of labor

$$MC_t = \frac{W_t}{MPN_t}$$

Distortions due to nominal rigidity

• Putting these together we can say

$$\frac{W_t}{P_t} = \frac{\mathcal{M}}{\mathcal{M}_t} M P N_t$$

and since the household is on its labor supply curve

$$-\frac{U_n(C_t, N_t)}{U_c(C_t, N_t)} = \frac{\mathcal{M}}{\mathcal{M}_t} MPN_t$$

• To extent $\mathcal{M}_t \neq \mathcal{M}$, we have *wedge* between marginal rate of substitution and marginal rate of transformation between C and N

- implies aggregate output, employment generally too high or too low

Relative price dispersion & agg. productivity

• Aggregation. Start with

$$N = \int_0^1 N(j) \, dj$$

• From production function for each j

$$Y(j) = AN(j)^{1-\alpha} \qquad \Leftrightarrow \qquad N(j) = \left(\frac{Y(j)}{A}\right)^{\frac{1}{1-\alpha}}$$

• Demand curve for each product

$$Y(j) = \left(\frac{P(j)}{P}\right)^{-\varepsilon} Y$$

• Therefore

$$N = \int_0^1 \left[\left(\frac{P(j)}{P} \right)^{-\varepsilon} \frac{Y}{A} \right]^{\frac{1}{1-\alpha}} dj$$

Relative price dispersion & agg. productivity

• Gives aggregate production function

 $Y = ADN^{1-\alpha}$

• Aggregate productivity (Solow residual) is AD where D is a measure of *inefficient relative price dispersion*

$$D \equiv \left[\int_0^1 \left(\frac{P(j)}{P} \right)^{\frac{\varepsilon}{\alpha - 1}} dj \right]^{\alpha - 1} \le 1$$

- D is decreasing in amount of cross-sectional price dispersion
 - in this example, efficient allocation features no price dispersion
 - economy is inside production possibility frontier if D < 1
- **Important:** Dispersion term drops out if log-linearize around zero inflation (2nd order in that case), *but not generally*

Optimal policy in the new Keynesian model

- Simple calculation. Suppose initial condition $P_{-1}(j) = P_{-1}$ for all j (no cross-sectional relative price dispersion, $D_{-1} = 1$)
- Suppose $P_t^* = P_{t-1}$ for all that get opportunity for t = 0, 1, 2, ...then no relative price dispersion going forward $D_t = 1$
- If so, optimal markup $\mathcal{M}_t = \mathcal{M} = \epsilon/(\epsilon 1)$. Efficient allocations can be implemented with subsidy

Optimal policy in the new Keynesian model

• In short, for all t = 0, 1, 2....

$$\pi_t = 0$$

$$\tilde{y}_t = 0$$

$$i_t = r_t^n$$

- Output fluctuates, $y_t = y_t^n$. Output gap fluctuations eliminated
- Price stability, but not because valued for own sake, rather to mitigate distortions caused by nominal rigidity

Next class

- Monetary policy in the new Keynesian model, part two
 - equilibrium stability and uniqueness
 - implementation of optimal policy
- Reading: Gali, chapter 4 section 4.3–4.4