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This class

• Monetary policy in the new Keynesian model, part one

– efficient allocations, sources of distortion

• Reading: Gali, chapter 4 section 4.1–4.2
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This class

1- Efficient allocations

2- Sources of suboptimality in the new Keynesian model

– digression on profits and taxes

3- Optimal policy
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Efficient allocations

• Social planner maximizes utility
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subject to the physical resource constraints

C(j) = Y (j) = AN(j)1�↵, for all j 2 [0, 1]
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0
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• Once again, this is an entirely static problem
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Efficient allocations

• Lagrangian for this problem

L = U
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• First order conditions

C(j) : Uc(C,N)
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= �(j)

and

N(j) : �Un(C,N) = (1� ↵)AN(j)�↵�(j)
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Efficient allocations

• The first order conditions imply that for all j

C(j) = C

N(j) = N

(because utility is concave and the goods are perfectly symmetric)

• The aggregates C,N satisfy the marginal rate of substitution equal
marginal rate of transformation condition

�Un(C,N)

Uc(C,N)
= (1� ↵)AN�↵

and the aggregate resource constraint

C = AN1�↵
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Suboptimality in the new Keynesian model

• Two sources of suboptimality

1- imperfect competition

(firms set markup over marginal cost, lower output)

2- nominal rigidity

(time variation in markups, distorts cross-sectional relative prices)
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Decentralized equilibrium with flexible prices

• Imperfect competition but flexible prices

• Gives “natural” output etc underlying the new Keynesian
equilibrium

• Reminder
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Since C = AN1�↵, markup implies real wage
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Labor not paid its social marginal product
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Decentralized equilibrium with flexible prices

• Can correct markup distortion with tax/subsidy scheme

• Let price received by firm be scaled by tax ⌧
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• Implement marginal cost pricing by

1� ⌧ =
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(a subsidy, makes sense since otherwise output too low)
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Digression on profits in the decentralized model

• For simplicity, suppose constant marginal costs (↵ = 0)

• Profits to producer of variety j are

⇧(j) ⌘

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• With constant optimal markup, simplifies to

⇧ =
1

"� 1

W

A
Y
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Digression on profits in the decentralized model

• Budget constraint of household

PC = WN +⇧

• In equilibrium, pricing behavior of firms implies

PC =
"

"� 1

W

A
C =

"

"� 1
WN

• And equilibrium profits are
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• So this all adds up (yay)!
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Digression on profits in the decentralized model

• With tax/subsidy

⇧(j) ⌘

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• When subsidy is 1� ⌧ = "/("� 1), this simplifies to
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(same as without tax/subsidy, since net price unchanged)
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Digression on profits in the decentralized model

• Budget constraint of household, now with lump sum taxes

PC = WN +⇧� T

• In equilibrium, pricing behavior of firms implies

PC =
1

1� ⌧
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• Thus

T = +⇧

• With this subsidy, equilibrium is same as planner’s allocation
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Distortions due to nominal rigidity
• Calvo pricing implies time-varying average markup Mt

• Write this as

(1� ⌧)Pt = MtMCt

where Pt is price level, MCt is average marginal cost

• When we eliminate the static imperfect competition distortion
with the subsidy 1� ⌧ = M we can say

Pt

MCt
=

Mt

M

• Define average marginal product of labor

MCt =
Wt

MPNt
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Distortions due to nominal rigidity

• Putting these together we can say

Wt

Pt
=

M
Mt

MPNt

and since the household is on its labor supply curve

�Un(Ct, Nt)

Uc(Ct, Nt)
=

M
Mt

MPNt

• To extent Mt 6= M, we have wedge between marginal rate of
substitution and marginal rate of transformation between C and N

– implies aggregate output, employment generally too high or too low
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Relative price dispersion & agg. productivity
• Aggregation. Start with

N =
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• From production function for each j

Y (j) = AN(j)1�↵ , N(j) =
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• Demand curve for each product
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Relative price dispersion & agg. productivity
• Gives aggregate production function

Y = ADN1�↵

• Aggregate productivity (Solow residual) is AD where
D is a measure of inefficient relative price dispersion

D ⌘
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• D is decreasing in amount of cross-sectional price dispersion

– in this example, efficient allocation features no price dispersion

– economy is inside production possibility frontier if D < 1

•
Important: Dispersion term drops out if log-linearize around zero
inflation (2nd order in that case), but not generally
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Optimal policy in the new Keynesian model

• Simple calculation. Suppose initial condition P�1(j) = P�1 for all j
(no cross-sectional relative price dispersion, D�1 = 1)

• Suppose P ⇤
t = Pt�1 for all that get opportunity for t = 0, 1, 2, ...

then no relative price dispersion going forward Dt = 1

• If so, optimal markup Mt = M = ✏/(✏� 1). Efficient allocations
can be implemented with subsidy
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Optimal policy in the new Keynesian model

• In short, for all t = 0, 1, 2....

⇡t = 0

ỹt = 0

it = rnt

• Output fluctuates, yt = ynt . Output gap fluctuations eliminated

• Price stability, but not because valued for own sake, rather to
mitigate distortions caused by nominal rigidity
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Next class

• Monetary policy in the new Keynesian model, part two

– equilibrium stability and uniqueness

– implementation of optimal policy

• Reading: Gali, chapter 4 section 4.3–4.4
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