Monetary Economics

Lecture 16: unemployment in the new Keynesian model, part two

Chris Edmond

2nd Semester 2014

This class

- Unemployment fluctuations in the new Keynesian model, part two
- Main reading:
 - ◊ Gali, Unemployment Fluctuations and Stabilization Policies: A New Keynesian Perspective, MIT Press, 2011, sections 1.3–1.4

This class

- **1-** Solving the model with sticky wages and sticky prices
- 2- Responses to productivity and monetary policy shocks
- **3-** Volatility and persistence of unemployment
 - conditional second moments
 - sensitivity to amount of nominal wage rigidity

Flexible price equilibrium

• Equilibrium variables defined relative to *natural* counterparts, i.e., values that would obtain in absence of *all* nominal rigidities

FLEXIBLE PRICE EQUILIBRIUM CONDITIONS: $c_t = y_t = a_t + (1 - \alpha)n_t \qquad \text{goods market clearing} \\ \omega_t = a_t - \alpha n_t + \log(1 - \alpha) - \mu^p \qquad \text{labor demand} \\ \omega_t = c_t + \varphi n_t + \xi_t + \mu^w \qquad \text{labor supply} \end{cases}$ where $\omega_t \equiv w_t - p_t$ and where $\xi_t \equiv \log \chi_t$ is shock to labor supply

• Solve these for endogenous $\{c_t, y_t, n_t, \omega_t\}$ in terms of exogenous $\{a_t, \xi_t\}$ processes

• Also
$$u^n = \mu^w / \varphi$$
 (constant) and $l_t = n_t + u^n$

Flexible price equilibrium

• Solutions:

$$n_{t} = -\frac{1}{1+\varphi}\xi_{t} + \overline{n}$$

$$c_{t} = y_{t} = a_{t} - \frac{1-\alpha}{1+\varphi}\xi_{t} + \overline{y}$$

$$\omega_{t} = a_{t} + \frac{\alpha}{1+\varphi}\xi_{t} + \overline{\omega}$$

where $\overline{n}, \overline{y}, \overline{\omega}$ are steady-state (constant) values

• AR(1) processes for supply-side shocks

$$a_{t+1} = \rho_a a_t + \varepsilon_{t+1}^a$$
$$\xi_{t+1} = \rho_\xi \xi_t + \varepsilon_{t+1}^\xi$$

• Exogenous variables

- natural wage rate

$$\omega_t^n = a_t + \frac{\alpha}{1 + \varphi} \xi_t + \overline{\omega}$$

- natural interest rate

$$r_t^n = \rho + \mathbb{E}_t \{ \Delta y_{t+1}^n \}$$
$$= \rho + (1 - \rho_a) a_t - \frac{1 - \alpha}{1 + \varphi} (1 - \rho_\xi) \xi_t$$

- monetary policy shock (another AR(1) process)

$$v_{t+1} = \rho_v v_t + \varepsilon_{t+1}^v$$

• Log linearized Euler equation

$$i_t = \rho + \mathbb{E}_t \left\{ \Delta c_{t+1} \right\} + \mathbb{E}_t \left\{ \pi_{t+1}^p \right\}$$

or as usual, a dynamic IS curve

$$\tilde{y}_t = -(i_t - \mathbb{E}_t \{\pi_{t+1}^p\} - r_t^n) + \mathbb{E}\{\tilde{y}_{t+1}\}$$

where $\tilde{y}_t \equiv y_t - y_t^n$ is the output gap

• Price inflation Phillips curve

$$\pi_t^p = \beta \mathbb{E}_t \{ \pi_{t+1}^p \} + \kappa_p \tilde{y}_t + \lambda_p \tilde{\omega}_t$$

where $\tilde{\omega}_t \equiv \omega_t - \omega_t^n$ is the *wage gap* and where

$$\kappa_p \equiv \frac{\alpha}{1-\alpha} \lambda_p$$

• This uses the relationship

$$\mu_t^p - \mu^p \equiv p_t - \psi_t - \mu^p = -\frac{\alpha}{1 - \alpha} \tilde{y}_t - \tilde{\omega}_t$$

• Wage inflation Phillips curve

$$\pi_t^w = \beta \mathbb{E}_t \{ \pi_{t+1}^w \} + \kappa_w \tilde{y}_t - \lambda_w \tilde{\omega}_t$$

where

$$\kappa_w \equiv \left(1 + \frac{\varphi}{1 - \alpha}\right) \lambda_w$$

• This uses the relationship

$$\mu_t^w - \mu^w \equiv \omega_t - mrs_t - \mu^w = \tilde{\omega}_t - \left(1 + \frac{\varphi}{1 - \alpha}\right)\tilde{y}_t$$

• Note: coefficient on wage gap is positive in price-inflation curve but negative in wage-inflation curve

• Unemployment

$$\varphi(u_t - u^n) = \mu_t^w - \mu^w = \tilde{\omega}_t - \left(1 + \frac{\varphi}{1 - \alpha}\right)\tilde{y}_t$$

• Wage gap identity

$$\tilde{\omega}_t = \tilde{\omega}_{t-1} + \pi_t^w - \pi_t^p - \Delta \omega_t^n$$

• Interest rate rule

$$i_t = \rho + \phi_\pi \pi_t^p + \phi_y \tilde{y}_t + v_t$$

• Six equations in six endogenous variables $\{\tilde{y}_t, \tilde{\omega}_t, \pi_t^p, \pi_t^w, u_t, i_t\}$. Can be solved with method of undetermined coefficients

Benchmark parameters

$$\beta = 0.99$$
 quarterly

$$\varphi = 5$$
 curvature of labor disutility

$$\alpha = 1/4$$
 decreasing returns to labor

$$\varepsilon_p = 9$$
 elasticity substitution goods
 $\varepsilon_w = 4.5$ elasticity substitution labor
 $\theta_p = 3/4$ price stickiness
 $\theta_w = 3/4$ wage stickiness

 $\phi_{\pi} = 1.5$ inflation coefficient in policy rule $\phi_y = 0.5/4$ output gap coefficient in policy rule

 $\rho_a = \rho_v = \rho_{\xi} = 0.9$ autoregressive coefficients for shocks

Implications of parameter choices

• Goods markup

$$\mathcal{M}_p = \frac{\varepsilon_p}{\varepsilon_p - 1} = 1.125 \qquad \text{(or } 12.5\%\text{)}$$

• Labor share

$$\frac{WN}{PY} = (1 - \alpha)\frac{1}{\mathcal{M}_p} = 0.75\frac{1}{1.125} = 0.667$$

• Steady-state unemployment

$$\mathcal{M}_w = \frac{\varepsilon_w}{\varepsilon_w - 1} = \exp(\varphi u^n) \Rightarrow u^n = 0.05 \quad \text{(or 5\%)}$$

Response to a productivity shock ε_t^a

13

Response to a productivity shock ε_t^a

- Output increases, inflation falls
- Unemployment rises
 - employment falls a lot and labor force falls only a little
 - recall that productivity shocks often decrease short-run employment in standard new Keynesian models
- Real wage gradually rises
 - wages and prices both decline, the former because of the increase in unemployment
 - real wage rises because prices decline by more than wages

Response to a monetary policy shock ε_t^v

15

Response to a monetary policy shock ε_t^v

- Output and employment decline substantially
- Labor force increases a little negative wealth effect
- Unemployment rises
- Real wage falls
- Price inflation falls

Response to a labor supply shock ε_t^ξ

17

Response to a labor supply shock ε_t^{ξ}

- Labor force falls
- Unemployment declines substantially
- Real wage increases, inflation increases
- Induces nominal interest rate rise, output and employment falls, but these effects small relative to initial labor supply shock

Second Moments

• Key statistics: standard deviations relative to output, and correlations with output

$$\frac{\sigma(x)}{\sigma(y)}$$
, and $\rho(x,y)$

all variables expressed as deviations from (HP) trend

- Data for US and Euro area
- Simulations conditional on each type of shock

Table 2. Second Moments: Model vs. Data (HP-Filtered)												
	U.S.	Data	Euro Data		Technology		Monetary		Labor Supply			
	$\frac{\sigma(x)}{\sigma(y)}$	$\rho(x,y)$	$\frac{\sigma(x)}{\sigma(y)}$	ho(x,y)	$\frac{\sigma(x)}{\sigma(y)}$	ho(x,y)	$\frac{\sigma(x)}{\sigma(y)}$	ho(x,y)	$\frac{\sigma(x)}{\sigma(y)}$	ho(x,y)		
Unemployment	0.46	-0.89	0.37	-0.81	1.30	0.96	1.68	-0.99	4.42	0.95		
Employment	0.60	0.82	0.63	0.78	1.44	-0.98	1.49	0.99	1.49	0.99		
Labor force	0.23	0.26	0.32	0.54	0.17	-0.92	0.17	-0.98	5.87	0.97		
Real Wage	0.59	0.16	0.69	0.27	0.38	0.53	0.15	0.57	0.87	-0.75		
Inflation	0.34	0.36	0.39	0.36	0.40	-0.99	0.20	0.99	0.31	-0.99		

Data

- Employment more volatile than unemployment, itself more volatile than labor force
- All three are less volatile than output, as are real wage and inflation
- Unemployment strongly countercyclical, employment strongly procyclical
- Real wage and inflation weakly procyclical

Model

- Productivity shocks imply:
 - countercyclical employment and inflation, procyclical unemployment
 - excessively volatile employment and unemployment, excessively cyclical real wage
- Monetary policy shocks imply:
 - countercyclical unemployment, procyclical employment and inflation, **but**
 - excessively volatile employment and unemployment, excessively cyclical inflation
- None of these shocks alone provides a good account of the data

Comparative statics

• Implications of wage rigidities for unemployment dynamics?

- Consider monetary shocks alone
- Vary key parameter θ_w and consider implications for
 - *volatility*: the std dev of unemployment (relative to the benchmark model)
 - *persistence*: first-order autocorrelation of unemployment
 - cyclicality: correlation with output

Table 3. Wage Rigidities and Unemployment Fluctuations											
	1	/olatilit	у	I	Persistenc	e	Cyclicality				
$ heta_w$:	0.1	0.5	0.75	0.1	0.5	0.75	0.1	0.5	0.75		
$\rho_v = 0.0$	0.18	0.22	0.23	-0.16	-0.08	-0.07	-0.99	-1.0	-1.0		
$\rho_v = 0.5$	0.24	0.39	0.42	0.20	0.34	0.37	-0.98	-0.99	-1.0		
$\rho_v = 0.9$	0.15	0.54	1.0	0.40	0.62	0.68	-0.92	-0.99	-1.0		

Results

- Volatility increases with degree of nominal wage rigidity
- Persistence increases with degree of nominal wage rigidity, need highly persistent shocks to obtain realistic persistence
- Cyclicality essentially independent of degree of nominal wage rigidity, unemployment always countercyclical

Next week

- Part II: Frictions in Banking and Financial Intermediation
- Background and overview of the global financial crisis.
- Readings
 - ◊ Brunnermeier, "Deciphering the liquidity and credit crunch 2007-2008" Journal of Economic Perspectives, 2009
 - ♦ Cecchetti, "Crisis and response: the Federal Reserve in the early stages of the financial crisis" *Journal of Economic Perspectives*, 2009
 - ◊ Coval, Jurek and Stafford "Economics of structured finance" Journal of Economic Perspectives, 2009

Readings available from the LMS