Monetary Economics

Lecture 14: monetary/fiscal interactions in the new Keynesian model, part four

Chris Edmond

 $2nd \ Semester \ 2014$

This class

- Optimal policy in a liquidity trap *with commitment*
- Reading:
 - ◊ Werning, "Managing a liquidity trap: Monetary and fiscal policy" MIT working paper 2012, sections 4−7

Available from the LMS

This class

- **1-** Monetary policy with commitment
 - optimal path of interest rates, inflation and output
 - importance of commitment to output boom after trap
- **1-** Fiscal policy with commitment
 - optimal pattern of government purchases
 - decomposition into 'opportunistic' and 'stimulus' components

Optimal monetary policy with commitment

• Monetary policy minimizes

$$L = \frac{1}{2} \int_0^\infty e^{-\rho t} \left(x(t)^2 + \lambda \pi(t)^2 \right) dt$$

subject to the constraints

$$\dot{x}(t) = \sigma^{-1}(i(t) - \pi(t) - r(t))$$
$$\dot{\pi}(t) = \rho \pi(t) - \kappa x(t)$$
$$i(t) \ge 0$$

taking as given path r(t)

• Control *i*, state x, π with free initial conditions $x(0), \pi(0)$

Optimal monetary policy with commitment

• Hamiltonian for this problem

$$\mathcal{H} = \frac{1}{2}(x^2 + \lambda \pi^2) + \mu_x(\sigma^{-1}(i - \pi - r)) + \mu_\pi(\rho \pi - \kappa x) - \psi i$$

with costates μ_x, μ_π and multiplier on ZLB constraint ψ

• Key optimality conditions

$$\mu_x(t)\sigma^{-1} = \psi(t), \qquad \psi(t)i(t) = 0 \qquad \text{with comp. slackness}$$

and

$$\rho \mu_x(t) - \dot{\mu}_x(t) = x(t) - \kappa \mu_\pi(t)$$

$$\rho \mu_\pi(t) - \dot{\mu}_\pi(t) = \lambda \pi(t) - \sigma^{-1} \mu_x(t) + \rho \mu_\pi(t)$$

Optimal monetary policy with commitment

• Hence system can be written

$$\mu_x(t) \ge 0, \qquad \mu_x(t)i(t) = 0$$

with

$$\dot{\mu}_x(t) = \rho \mu_x(t) - x(t) + \kappa \mu_\pi(t)$$
$$\dot{\mu}_\pi(t) = -\lambda \pi(t) + \sigma^{-1} \mu_x(t)$$
$$\dot{x}(t) = \sigma^{-1}(i(t) - \pi(t) - r(t))$$
$$\dot{\pi}(t) = \rho \pi(t) - \kappa x(t)$$

taking as given path r(t)

• Boundary conditions: (i) $\mu_x(0) = 0$ and $\mu_\pi(0) = 0$, since both x(0) and $\pi(0)$ are free, and (ii) two transversality conditions

Preliminaries

• Suppose ZLB not binding, $\psi(t) = 0$ hence $\mu_x(t) = \dot{\mu}_x(t) = 0$ so that

$$x(t) = \kappa \mu_{\pi}(t)$$

hence

$$\dot{x}(t) = \kappa \dot{\mu}_{\pi}(t) = \kappa \left(-\lambda \pi(t) + \sigma^{-1} 0 \right) = -\kappa \lambda \pi(t)$$

but by the Euler equation

$$\dot{x}(t) = \sigma^{-1}(i(t) - \pi(t) - r(t))$$

• Solving for i(t) then gives

$$i(t) = I(r(t), \pi(t)), \text{ where } I(r, \pi) := r + (1 - \sigma \kappa \lambda)\pi$$

This is the optimal nominal rate whenever the ZLB is not binding. $I(r, \pi) \ge 0$ is necessary for ZLB to not bind. But not sufficient.

Approach

• Three phases

- I. During the liquidity trap, $t \in [0, T)$
- **II.** Just out of the trap, $t \in [T, \hat{T})$

III. After the storm has passed, $t \in [\hat{T}, \infty)$

- Need to 'stitch together' three phase diagrams
- Key is whether $x(t), \pi(t)$ are free at critical dates $t = 0, T, \hat{T}$
- Solve backwards from terminal conditions

Phase III. After the storm

- At beginning of Phase III $x(\hat{T}), \pi(\hat{T})$ are given (not free)
- ZLB is *not binding* so $i(t) = I(\overline{r}, \pi(t))$
- Under this control, motion of system given by

$$\dot{x}(t) = -\kappa\lambda\pi(t)$$
$$\dot{\pi}(t) = \rho\pi(t) - \kappa x(t)$$

• Solve with method of undetermined coefficients. Guess $x(t) = \phi \pi(t)$ for some ϕ . Then $\dot{x}(t) = \phi \dot{\pi}(t)$ so

$$-\kappa\lambda\pi(t) = \phi\Big(\rho\pi(t) - \kappa\phi\pi(t)\Big)$$

Phase III. After the storm

• Since this must hold for all $\pi(t)$ we have the restriction

$$Q(\phi) = \kappa \phi^2 - \rho \phi - \kappa \lambda = 0$$

• Solving for the roots of this quadratic

$$\phi_1, \phi_2 = \frac{\rho \pm \sqrt{\rho^2 + 4\kappa^2 \lambda}}{2\kappa}$$

(one of which is positive, the other negative)

• We want these dynamics to take us *towards* $x(\infty) = \pi(\infty) = 0$, so we choose the positive solution

$$\phi = \frac{\rho + \sqrt{\rho^2 + 4\kappa^2 \lambda}}{2\kappa} > \frac{\rho}{\kappa} > 0$$

Phase III. After the storm

 ϕ is slope of *saddle-path* through (0,0) with $i(t) = I(\overline{r}, \pi(t))$ for $t \in [\hat{T}, \infty)$

Phase II. Just out of the trap

- At beginning of Phase II $x(T), \pi(T)$ are given (not free)
- Liquidity trap is over but i(t) = 0 is *still optimal*. Policy commits to keeping i(t) = 0 even after trap is over
- Motion of system given by

$$\dot{x}(t) = -\sigma^{-1}(\pi(t) + \overline{r})$$
$$\dot{\pi}(t) = \rho\pi(t) - \kappa x(t)$$

• Same phase diagram as no-commitment case, except $\dot{x}(t) = 0$ locus at $\pi(t) = -\overline{r} < 0$ rather than at $-\underline{r} > 0$

Phase II. Just out of the trap

Admissible dynamics *from* given $x(T), \pi(T)$ with i(t) = 0 for $t \in [T, \hat{T})$

Phase I. During the liquidity trap

- At beginning of Phase I $x(0), \pi(0)$ free, but $x(T), \pi(T)$ given
- ZLB is *binding*, i(t) = 0
- Motion of system given by

$$\dot{x}(t) = -\sigma^{-1}(\pi(t) + \underline{r})$$
$$\dot{\pi}(t) = \rho\pi(t) - \kappa x(t)$$

• Same phase diagram as no-commitment case, $\dot{x}(t) = 0$ locus at $\pi(t) = -\underline{r} > 0$

Phase I. During the liquidity trap

Admissible dynamics *towards* $x(T), \pi(T)$ with i(t) = 0 for $t \in [0, T)$

Stitching it all together

Dynamics through the entire episode

Commitment vs. No-commitment

Paths for $\pi(t), x(t)$. Commitment in blue, no-commitment in black

Summary

- (1) If ZLB is not binding, then $i(t) = I(r(t), \pi(t))$
- (2) If $I(r(t), \pi(t)) < 0$ for $t \in [0, T)$ then i(t) = 0 for $t \in [0, \hat{T})$ for some $\hat{T} > T$
- (3) Inflation must be positive at some point
- (4) Output must be both positive and negative
- (5) Depending on parameters, inflation may be positive throughout

Communication

- Optimal policy requires commitment to i(t) = 0 for some $[T, \hat{T})$
- Two ways to summarize plan

(i)
$$i(t) = 0$$
 for $t \in [0, T)$ and $x^*(T), \pi^*(T)$ satisfying
 $x^*(T) > \phi \pi^*(T)$

(promised boom > promised boom implied by promised inflation) (ii) i(t) = 0 for $t \in [0, \hat{T})$ with $\hat{T} > T$ along with $\pi(\hat{T})$ $(x(\hat{T}) = \phi \pi(\hat{T})$ is expost optimal at \hat{T} but not at T)

• Policy commitments for t < T are irrelevant

Commitment to inflation? Or boom?

- Krugman (1998) and older literature emphasizes importance of commitment to deliver *inflation*
- Werning argues that real goal is to deliver *boom* (though optimum generally features some positive inflation)
- Three devices to illustrate this point
 - (i) completely rigid prices, $\kappa = 0$
 - (ii) commitment to exit inflation $\pi(T)$ only
 - (iii) exogenous constraint to avoid inflation

In each case we obtain result that commitment to i(t) = 0 after trap is over is motivated by desire to deliver a boom

Rigid prices

- Since $\kappa = 0$, inflation is $\pi(t) = 0$ always
- Suppose i(t) = 0 for $t \in [0, \hat{T})$ and $x(t) = \pi(t) = 0$ for $t > \hat{T}$
- Output gap then

$$x(t\,;\,\hat{T}) = \sigma^{-1} \int_t^{\hat{T}} r(s)\,ds$$

• Loss function is then

$$L(\hat{T}) = \frac{1}{2} \int_0^\infty e^{-\rho t} x(t\,;\,\hat{T})^2 \, dt$$

(choose \hat{T} to set PV of output gap to zero)

Rigid prices

If $\hat{T} = T$, then x(t) < 0. If $\hat{T} > T$ then x(t) higher and x(T) > 0

Since prices are fully rigid, creating inflation cannot be the purpose of monetary policy. Commitment to i(t) = 0 for $\hat{T} > T$ creates a boom to mitigate the welfare loss from the earlier recession. Current recession and future boom average out in PV. Creating inflation *not necessary* to rationalize commitment to i(t) = 0 after trap.

Exit inflation

Commitment to exit inflation $\pi(T)$ without boom, $i(t) = I(r(t), \pi(t))$ for $t \ge T$. Creating inflation *not sufficient* to rationalize commitment to i(t) = 0 after trap.

Inflation constraint

Exogenous constraint $\pi(t) \leq 0$. Same arc as no-commitment, but go through origin earlier and deliver boom at T. Again, boom offsets earlier recession.

Monetary policy summary

• Liquidity trap

- $-\,$ if no-commitment, then deflation and recession
- made worse by flexible prices
- need to commit to polices after trap
- Optimal monetary policy
 - avoids deflation
 - features commitment to i(t) = 0 even after trap
 - commitment to i(t) = 0 even after trap to deliver boom

Government purchases

• Representative consumer has preferences

U(C, N, G)

• Private consumption gap

$$c(t) = \frac{C(t) - C^{*}(t)}{C^{*}(t)}$$

• Government consumption gap

$$g(t) = \frac{G(t) - G^*(t)}{C^*(t)}$$

• Output gap

 $x(t) = c(t) - (1 - \Gamma)g(t)$, with multiplier $\Gamma \in (0, 1)$

Optimal policy with commitment

• Policy minimizes

$$L = \frac{1}{2} \int_0^\infty e^{-\rho t} \left(x(t)^2 + \lambda \pi(t)^2 + \eta g(t)^2 \right) dt$$

subject to the constraints

$$\dot{x}(t) = (1 - \Gamma)\dot{g}(t) + \sigma^{-1}(i(t) - \pi(t) - r(t))$$
$$\dot{\pi}(t) = \rho\pi(t) - \kappa x(t)$$
$$i(t) \ge 0$$

taking as given path r(t)

• Controls i, \dot{g} , states x, π, g , with free initial conditions $x(0), \pi(0), g(0)$

Filling in the gap

• Consider (suboptimal) policy of setting g(t) such that

$$c(t) + (1 - \Gamma)g(t) = \pi(t) = 0$$

• Requires

$$\dot{g}(t) = \frac{\sigma^{-1}}{1 - \Gamma} (r(t) - i(t))$$

which if i(t) = 0 for t < T and i(t) = r(t) for t > T implies

$$g(t) = \frac{\sigma^{-1}}{1 - \Gamma} \int_0^t r(s) \, ds + g(0), \qquad t < T$$

with g(t) = g(T) for $t \ge T$. Now optimize over g(0), g(T)

• Solution features g(0) > 0 > g(T). Suggests we should expect g(t) policy to take on both signs

Front-loading

Optimal g(t) in blue. Initially positive, falling. Becomes negative.

Decomposition

• Let $g^*(c)$ denote static 'opportunistic' government purchases, the g that minimizes

$$(c - (1 - \Gamma)g)^2 + \eta g^2$$

In recession (with low c) will get more g just because opportunity cost is lower

• Let $\hat{g}(t)$ denote 'stimulus'

 $\hat{g}(t) = g(t) - g^*(c(t))$

That part of g(t) not accounted for by $g^*(c(t))$

• In previous figure, $g^*(c(t))$ in green and $\hat{g}(t)$ in red. In fact, exactly zero 'stimulus' if $\kappa = 0$ or $\sigma \kappa \lambda = 1$.

Fiscal policy summary

- Stimulus component small $\hat{g}(t)$, most increase in g(t) is opportunistic
- Optimal g(t) is counter-cyclical, leans against the wind, but because it would be anyway
- That is, g(t) is very close to what would be chosen by myopic policy-maker that completely ignored general equilibrium effects (e.g., ignores effects of g(t) on inflation and hence c(t))

Next class

- Unemployment fluctuations in the new Keynesian model, part one
- Main reading:
 - ◊ Gali, Unemployment Fluctuations and Stabilization Policies: A New Keynesian Perspective, MIT Press, 2011, chapter 1
- Alternate reading:
 - ◊ Gali, "The return of the wage Phillips curve" Journal of the European Economic Association, 2011

Available from the LMS