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This class

• Optimal policy in a liquidity trap with commitment

• Reading:

⇧ Werning, “Managing a liquidity trap: Monetary and fiscal policy”

MIT working paper 2012, sections 4–7

Available from the LMS
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This class

1- Monetary policy with commitment

– optimal path of interest rates, inflation and output

– importance of commitment to output boom after trap

1- Fiscal policy with commitment

– optimal pattern of government purchases

– decomposition into ‘opportunistic’ and ‘stimulus’ components
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Optimal monetary policy with commitment

• Monetary policy minimizes

L =
1

2

Z 1

0
e

�⇢t (x(t)2 + �⇡(t)2) dt

subject to the constraints

ẋ(t) = �

�1(i(t)� ⇡(t)� r(t))

⇡̇(t) = ⇢⇡(t)� x(t)

i(t) � 0

taking as given path r(t)

• Control i, state x,⇡ with free initial conditions x(0),⇡(0)
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Optimal monetary policy with commitment

• Hamiltonian for this problem

H =
1

2
(x2 + �⇡

2) + µ

x

(��1(i� ⇡ � r)) + µ

⇡

(⇢⇡ � x)�  i

with costates µ

x

, µ

⇡

and multiplier on ZLB constraint  

• Key optimality conditions

µ

x

(t)��1 =  (t),  (t)i(t) = 0 with comp. slackness

and

⇢µ

x

(t)� µ̇

x

(t) = x(t)� µ

⇡

(t)

⇢µ

⇡

(t)� µ̇

⇡

(t) = �⇡(t)� �

�1
µ

x

(t) + ⇢µ

⇡

(t)
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Optimal monetary policy with commitment

• Hence system can be written

µ

x

(t) � 0, µ

x

(t)i(t) = 0

with

µ̇

x

(t) = ⇢µ

x

(t)� x(t) + µ

⇡

(t)

µ̇

⇡

(t) = ��⇡(t) + �

�1
µ

x

(t)

ẋ(t) = �

�1(i(t)� ⇡(t)� r(t))

⇡̇(t) = ⇢⇡(t)� x(t)

taking as given path r(t)

• Boundary conditions: (i) µ

x

(0) = 0 and µ

⇡

(0) = 0, since both x(0)
and ⇡(0) are free, and (ii) two transversality conditions
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Preliminaries
• Suppose ZLB not binding,  (t) = 0 hence µ

x

(t) = µ̇

x

(t) = 0 so that

x(t) = µ

⇡

(t)

hence

ẋ(t) = µ̇

⇡

(t) = 

⇣
� �⇡(t) + �

�10
⌘
= ��⇡(t)

but by the Euler equation

ẋ(t) = �

�1(i(t)� ⇡(t)� r(t))

• Solving for i(t) then gives

i(t) = I(r(t),⇡(t)), where I(r,⇡) := r + (1� ��)⇡

This is the optimal nominal rate whenever the ZLB is not binding.
I(r,⇡) � 0 is necessary for ZLB to not bind. But not sufficient.

7



Approach

• Three phases

I. During the liquidity trap, t 2 [0, T )

II. Just out of the trap, t 2 [T, T̂ )

III. After the storm has passed, t 2 [T̂ ,1)

• Need to ‘stitch together’ three phase diagrams

• Key is whether x(t),⇡(t) are free at critical dates t = 0, T, T̂

• Solve backwards from terminal conditions
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Phase III. After the storm

• At beginning of Phase III x(T̂ ),⇡(T̂ ) are given (not free)

• ZLB is not binding so i(t) = I(r,⇡(t))

• Under this control, motion of system given by

ẋ(t) = ��⇡(t)
⇡̇(t) = ⇢⇡(t)� x(t)

• Solve with method of undetermined coefficients. Guess
x(t) = �⇡(t) for some �. Then ẋ(t) = �⇡̇(t) so

��⇡(t) = �

⇣
⇢⇡(t)� �⇡(t)

⌘
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Phase III. After the storm

• Since this must hold for all ⇡(t) we have the restriction

Q(�) = �

2 � ⇢�� � = 0

• Solving for the roots of this quadratic

�1,�2 =
⇢±

p
⇢

2 + 42�

2

(one of which is positive, the other negative)

• We want these dynamics to take us towards x(1) = ⇡(1) = 0, so
we choose the positive solution

� =
⇢+

p
⇢

2 + 42�

2
>

⇢



> 0
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Phase III. After the storm
� is slope of saddle-path through (0, 0) with i(t) = I(r,⇡(t)) for t 2 [T̂ ,1)
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Phase II. Just out of the trap

• At beginning of Phase II x(T ),⇡(T ) are given (not free)

• Liquidity trap is over but i(t) = 0 is still optimal. Policy commits
to keeping i(t) = 0 even after trap is over

• Motion of system given by

ẋ(t) = ���1(⇡(t) + r)

⇡̇(t) = ⇢⇡(t)� x(t)

• Same phase diagram as no-commitment case, except ẋ(t) = 0 locus
at ⇡(t) = �r < 0 rather than at �r > 0
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Phase II. Just out of the trap
Admissible dynamics from given x(T ),⇡(T ) with i(t) = 0 for t 2 [T, T̂ )

13



Phase I. During the liquidity trap

• At beginning of Phase I x(0),⇡(0) free, but x(T ),⇡(T ) given

• ZLB is binding, i(t) = 0

• Motion of system given by

ẋ(t) = ���1(⇡(t) + r)

⇡̇(t) = ⇢⇡(t)� x(t)

• Same phase diagram as no-commitment case, ẋ(t) = 0 locus at
⇡(t) = �r > 0
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Phase I. During the liquidity trap
Admissible dynamics towards x(T ),⇡(T ) with i(t) = 0 for t 2 [0, T )
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Stitching it all together
Dynamics through the entire episode
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Commitment vs. No-commitment
Paths for ⇡(t), x(t). Commitment in blue, no-commitment in black
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Summary

(1) If ZLB is not binding, then i(t) = I(r(t),⇡(t))

(2) If I(r(t),⇡(t)) < 0 for t 2 [0, T ) then i(t) = 0 for t 2 [0, T̂ )
for some T̂ > T

(3) Inflation must be positive at some point

(4) Output must be both positive and negative

(5) Depending on parameters, inflation may be positive throughout
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Communication

• Optimal policy requires commitment to i(t) = 0 for some [T, T̂ )

• Two ways to summarize plan

(i) i(t) = 0 for t 2 [0, T ) and x

⇤(T ),⇡⇤(T ) satisfying

x

⇤(T ) > �⇡

⇤(T )

(promised boom > promised boom implied by promised inflation)

(ii) i(t) = 0 for t 2 [0, T̂ ) with T̂ > T along with

⇡(T̂ )

(x(T̂ ) = �⇡(T̂ ) is ex post optimal at T̂ but not at T )

• Policy commitments for t < T are irrelevant
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Commitment to inflation? Or boom?

• Krugman (1998) and older literature emphasizes importance of
commitment to deliver inflation

• Werning argues that real goal is to deliver boom (though optimum
generally features some positive inflation)

• Three devices to illustrate this point

(i) completely rigid prices,  = 0
(ii) commitment to exit inflation ⇡(T ) only

(iii) exogenous constraint to avoid inflation

In each case we obtain result that commitment to i(t) = 0 after
trap is over is motivated by desire to deliver a boom
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Rigid prices

• Since  = 0, inflation is ⇡(t) = 0 always

• Suppose i(t) = 0 for t 2 [0, T̂ ) and x(t) = ⇡(t) = 0 for t > T̂

• Output gap then

x(t ; T̂ ) = �

�1
Z

T̂

t

r(s) ds

• Loss function is then

L(T̂ ) =
1

2

Z 1

0
e

�⇢t

x(t ; T̂ )2 dt

(choose T̂ to set PV of output gap to zero)
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Rigid prices

If T̂ = T , then x(t) < 0. If T̂ > T then x(t) higher and x(T ) > 0

Since prices are fully rigid, creating inflation cannot be the purpose of monetary
policy. Commitment to i(t) = 0 for T̂ > T creates a boom to mitigate the welfare
loss from the earlier recession. Current recession and future boom average out in PV.
Creating inflation not necessary to rationalize commitment to i(t) = 0 after trap.
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Exit inflation

Commitment to exit inflation ⇡(T ) without boom, i(t) = I(r(t),⇡(t)) for t � T .
Creating inflation not sufficient to rationalize commitment to i(t) = 0 after trap.
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Inflation constraint

Exogenous constraint ⇡(t)  0. Same arc as no-commitment, but go through origin
earlier and deliver boom at T . Again, boom offsets earlier recession.
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Monetary policy summary

• Liquidity trap

– if no-commitment, then deflation and recession

– made worse by flexible prices

– need to commit to polices after trap

• Optimal monetary policy

– avoids deflation

– features commitment to i(t) = 0 even after trap

– commitment to i(t) = 0 even after trap to deliver boom
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Government purchases

• Representative consumer has preferences

U(C,N,G)

• Private consumption gap

c(t) =
C(t)� C

⇤(t)

C

⇤(t)

• Government consumption gap

g(t) =
G(t)�G

⇤(t)

C

⇤(t)

• Output gap

x(t) = c(t)� (1� �)g(t), with multiplier � 2 (0, 1)
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Optimal policy with commitment

• Policy minimizes

L =
1

2

Z 1

0
e

�⇢t (x(t)2 + �⇡(t)2 + ⌘g(t)2) dt

subject to the constraints

ẋ(t) = (1� �)ġ(t) + �

�1(i(t)� ⇡(t)� r(t))

⇡̇(t) = ⇢⇡(t)� x(t)

i(t) � 0

taking as given path r(t)

• Controls i, ġ, states x,⇡, g, with free initial conditions
x(0),⇡(0), g(0)
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Filling in the gap
• Consider (suboptimal) policy of setting g(t) such that

c(t) + (1� �)g(t) = ⇡(t) = 0

• Requires

ġ(t) =
�

�1

1� �
(r(t)� i(t))

which if i(t) = 0 for t < T and i(t) = r(t) for t > T implies

g(t) =
�

�1

1� �

Z
t

0
r(s) ds+ g(0), t < T

with g(t) = g(T ) for t � T . Now optimize over g(0), g(T )

• Solution features g(0) > 0 > g(T ). Suggests we should expect g(t)
policy to take on both signs
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Front-loading
Optimal g(t) in blue. Initially positive, falling. Becomes negative.
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Decomposition

• Let g

⇤(c) denote static ‘opportunistic’ government purchases, the g

that minimizes

(c� (1� �)g)2 + ⌘g

2

In recession (with low c) will get more g just because opportunity
cost is lower

• Let ĝ(t) denote ‘stimulus’

ĝ(t) = g(t)� g

⇤(c(t))

That part of g(t) not accounted for by g

⇤(c(t))

• In previous figure, g⇤(c(t)) in green and ĝ(t) in red. In fact, exactly
zero ‘stimulus’ if  = 0 or �� = 1.
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Fiscal policy summary

• Stimulus component small ĝ(t), most increase in g(t) is
opportunistic

• Optimal g(t) is counter-cyclical, leans against the wind, but
because it would be anyway

• That is, g(t) is very close to what would be chosen by myopic
policy-maker that completely ignored general equilibrium effects
(e.g., ignores effects of g(t) on inflation and hence c(t))

31



Next class

• Unemployment fluctuations in the new Keynesian model, part one

• Main reading:

⇧ Gali, Unemployment Fluctuations and Stabilization Policies: A New

Keynesian Perspective, MIT Press, 2011, chapter 1

• Alternate reading:

⇧ Gali, “The return of the wage Phillips curve”

Journal of the European Economic Association, 2011

Available from the LMS
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