Monetary Economics

Lecture 1: introduction

Chris Edmond

2nd Semester 2014

Contact details

- Office hours:
 - $\diamond~$ by appointment

Business & Economics 423

- Phone: 8344-9733
- Email: cedmond@unimelb.edu.au

Books

- Main reference for Part I
 - ◊ Jordi Gali (2008): Monetary Policy, Inflation and the Business Cycle. Princeton University Press.
- Background reading for Part II
 - ◊ Gary Gorton (2010): Slapped by the Invisible Hand. Oxford University Press.

Assessment

Task	Due date	Weight
Problem set $\#1$	Thurs Aug 7th	5%
${\rm Problem \ set} \ \#2$	Thurs Aug 28nd	5%
Problem set $\#3$	Thurs Sept 11th	5%
Problem set $\#4$	Thurs Sept 25th	5%
Problem set $\#5$	Thurs Oct 9th	5%
Problem set $\#6$	Thurs Oct 23rd	5%
Midsemester exam	take-home, due Tues Oct 7th	0 or 20%
Final exam	exam block	50 or 70%

Lecture schedule

Part I: New Keynesian Monetary Economics

- \diamond lectures 1–3, classical building blocks
- $\diamond\,$ lectures 4–7, basic new Keynesian model
- $\diamond\,$ lectures 8–10, monetary policy in the basic new Keynesian model
- $\diamond~$ lectures 11–14, monetary/fiscal interactions, liquidity traps etc
- \diamond lectures 15–16, unemployment in the new Keynesian model

Midsemester exam based on Part I

Lecture schedule

Part II: Frictions in Banking and Financial Intermediation

- $\diamond\,$ lectures 17, overview of financial crisis; securitisation
- $\diamond\,$ lectures 18, bank runs, old and new
- \diamond lectures 19–22, macro implications of financial frictions
- $\diamond\,$ lectures 23–24, recent debates and developments, course recap

Final exam covers Part I and Part II of course

Background

- New Keynesian model builds on real business cycle (RBC) model
- RBC model, key features
 - intertemporal utility maximisation
 - rational expectations
 - complete asset markets / representative agent
 - perfect competition in goods and factor markets
- RBC model, key implications
 - business cycles are Pareto efficient
 - business cycles driven by exogenous productivity shocks (and other exogenous real shocks: terms-of-trade, government spending, etc)
 - money is neutral
- Established use of *dynamic stochastic general equilibrium* (DSGE) models and *quantitative theory*

Background

- New Keynesian model, key features
 - intertemporal utility maximisation
 - rational expectations
 - complete asset markets / representative agent
 - imperfect competition in goods and/or factor markets
 - nominal rigidities (prices are *sticky*)
- New Keynesian model, key implications
 - business cycles are inefficient
 - business cycles driven by mixture of exogenous productivity shocks and exogenous monetary policy shocks
 - money is not neutral in the short run
 - money is neutral in the long run
- New Monetarist model (why not)?

Friedman's 1968 presidential address

Igure 1.1 Estimated Dynamic Response to a Monetary Policy Shock Source: Christiano, Eichenbaum, and Evans (1999).

Periods in quarters. Proportional responses to policy shock.

Sticky prices: evidence from micro data

• Conventional wisdom circa 2000

- average duration between price changes key to nonneutrality

- prices of individual goods & services sticky for ≈ 12 months
- Challenged by Bils and Klenow (JPE 2004)

– evidence from BLS micro data, sticky for \approx 4–6 months

- Rebuttal from Nakamura and Steinsson (QJE 2008)
 - including transitory sales drives Bils/Klenow result
 - excluding sales, sticky for $\approx 8-11$ months
- Attention now turning to other moments of the micro data
 - heterogeneity across sectors, products etc
 - skew of changes etc

Rest of this class

A benchmark classical monetary model

- reading: Gali (2008), chapter 2 sections 2.0-2.2
- **1-** Representative household, price taking
- **2-** Representative firm, price taking
- **3-** Equilibrium

Households

• Household preferences over consumption and labor supply

 $U(C_t, N_t)$

• Intertemporal preferences

$$\mathbb{E}_0\left\{\sum_{t=0}^\infty \beta^t U(C_t, N_t)\right\}, \qquad 0 < \beta < 1$$

• Flow budget constraint at every date and state

 $P_t C_t + Q_t B_t \le B_{t-1} + W_t N_t - T_t$

- We rule out *Ponzi games* (e.g., impose arbitrarily large bounds on real debt issuance)
- This is a *cashless* economy

Household intertemporal optimisation

• Lagrangian with nonnegative, stochastic, multipliers $\{\lambda_t\}$

$$L = \mathbb{E}_0 \left\{ \sum_{t=0}^{\infty} \left[\beta^t U(C_t, N_t) + \lambda_t \left(B_{t-1} + W_t N_t - T_t - P_t C_t - Q_t B_t \right) \right] \right\}$$

• First order conditions

$$C_t: \qquad \beta^t U_c(C_t, N_t) = \lambda_t P_t$$

$$N_t: \qquad -\beta^t U_n(C_t, N_t) = \lambda_t W_t$$

$$B_t: \qquad \qquad \lambda_t Q_t = \mathbb{E}_t \left\{ \lambda_{t+1} \right\}$$

These hold at every date and state

Household first order conditions

• Let

$$U_{c,t} \equiv U_c(C_t, N_t), \qquad U_{n,t} \equiv U_n(C_t, N_t)$$

• Labor supply

$$-\frac{U_{n,t}}{U_{c,t}} = \frac{W_t}{P_t}$$

• Intertemporal consumption Euler equation

$$Q_t = \mathbb{E}_t \left\{ \beta \frac{U_{c,t+1}}{U_{c,t}} \frac{P_t}{P_{t+1}} \right\}$$

Firms

- Competition in goods and factor markets
- Production function

 $Y_t = A_t F(N_t)$

• Profits

$$P_t Y_t - W_t N_t$$

• Labor demand

$$A_t F'(N_t) = \frac{W_t}{P_t}$$

Equilibrium

- A competitive equilibrium involves
 - households optimising taking prices as given
 - firms optimising taking prices as given
 - prices such that markets clear
- Optimality conditions for labor supply and demand give

$$-\frac{U_n(C_t, N_t)}{U_c(C_t, N_t)} = \frac{W_t}{P_t} = A_t F'(N_t)$$

• Goods market clearing

$$Y_t = C_t$$

• Bond market clears if goods market clears

Next class

- Solving the classical monetary model
- Reading: Gali (2008), chapter 2 sections 2.3 and appendix 2.1