

ECON40002 Chris Edmond

Advanced Macroeconomics Tutorial #8

Productivity shocks in the basic new Keynesian model. Consider a new Keynesian model where the output gap \hat{x}_t and inflation $\hat{\pi}_t$ solve

$$\hat{x}_{t} = -\frac{1}{\sigma} \left(i_{t} - \mathbb{E}_{t} \left\{ \hat{\pi}_{t+1} \right\} - r_{t}^{n} \right) + \mathbb{E}_{t} \left\{ \hat{x}_{t+1} \right\}$$
(1)

and

$$\hat{\pi}_t = \kappa \hat{x}_t + \beta \mathbb{E}_t \left\{ \hat{\pi}_{t+1} \right\} \tag{2}$$

and where monetary policy is given by the interest rate rule

 $i_t = \rho + \phi_\pi \hat{\pi}_t + \phi_x \hat{x}_t$

with $\phi_{\pi} > 1$. The natural level of output is proportional to productivity, $\hat{y}_t^n = \psi_{yz} \hat{z}_t$ for some coefficient $\psi_{yz} > 0$ and some exogenously given process for productivity \hat{z}_t . The production function is linear in labor so that $\hat{y}_t = \hat{z}_t + \hat{l}_t$.

- (a) Describe in words the 'microfoundations' of equations (1) and (2).
- (b) Suppose that productivity is given by an AR(1) process

$$\hat{z}_{t+1} = \rho_z \hat{z}_t + \varepsilon_{t+1}, \qquad 0 \le \rho_z < 1$$

where the innovations ε_t are IID normal with mean zero and variance σ_z^2 . What process does this imply for the natural real rate r_t^n ?

- (c) Guess that the output gap and inflation are linear in the shock, $\hat{x}_t = \psi_{xz} \hat{z}_t$ and $\hat{\pi}_t = \psi_{\pi z} \hat{z}_t$ for two coefficients ψ_{xz} and $\psi_{\pi z}$. Use the method of undetermined coefficients to solve for ψ_{xz} and $\psi_{\pi z}$.
- (d) Explain how the output gap, output, employment, inflation, and the nominal and real interest rates respond to a productivity shock \hat{z}_t . Give intuition for your results.

Now suppose that productivity is given by an AR(1) process in growth rates

$$\Delta \hat{z}_{t+1} = (1 - \rho_{\Delta})\bar{g} + \rho_{\Delta}\Delta \hat{z}_t + \varepsilon_{t+1}, \qquad 0 \le \rho_{\Delta} < 1$$

where $\bar{g} \ge 0$ denotes the long-run growth rate of productivity.

- (e) Suppose $\rho_{\Delta} = 0$. What process does this imply for the natural real rate r_t^n ? Explain. How does this affect the responses of the output gap, output, employment, inflation, and the nominal and real interest rates to a productivity growth shock $\Delta \hat{z}_t$?
- (f) Now suppose $0 < \rho_{\Delta} < 1$. How if at all do your answers to (e) change? Explain.
- (g) Now suppose the monetary policy can condition on the natural real rate

$$i_t = r_t^n + \phi_\pi \hat{\pi}_t + \phi_x \hat{x}_t$$

How if at all do your answers to (e) change? Explain.