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Tutorial #4: Solutions

Linear growth. Consider a continuous time Ramsey-Cass-Koopmans model. The planner seeks to
maximize the intertemporal utility function∫ ∞

0

e−ρt log(c(t)) dt, ρ > 0

Output per person is given by the linear production function y = Ak so that the planner’s flow
resource constraint is

k̇(t) = (A− δ)k(t)− c(t)
given initial k(0) > 0. Assume that the marginal product of capital is greater than the depreciation
rate, A > δ.

(a) Setup a Hamiltonian for this problem. Derive the key optimality conditions for c(t) and k(t).

(b) Let r ≡ A − δ and suppose r > ρ. Use a phase diagram to explain the dynamics of c(t) and
k(t). Do these dynamics generally converge to a steady state c∗ and k∗? Why or why not?
Explain. How if at all would your answer change if instead r < ρ?

(c) Solve for the optimal c(t) and k(t) starting from initial conditions c(0) and k(0). What value
must c(0) have if these trajectories are to be optimal? Show that your solution satisfies the
transversality condition.

(d) Show that the dynamics of c(t) and k(t) can be written as a linear system of the form(
ċ(t)

k̇(t)

)
=

(
a11 a12
a21 a22

)(
c(t)
k(t)

)
Express the coefficients a11 etc in terms of model parameters. Do the eigenvalues of this coeffi-
cient matrix imply stable or unstable dynamics? Explain.

Solutions:

(a) The Hamiltonian for this problem can be written

H = u(c) + µ(Ak − δk − c)

where µ denotes the multiplier on the resource constraint. The general form of optimality
conditions for this kind of control problem are that the derivative of the Hamiltonian with
respect to the control variable is zero, so here

∂H

∂c
= 0
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and that the derivative of the Hamiltonian with respect to the state variable satisfies

∂H

∂k
= ρµ(t)− µ̇(t)

Computing the required derivatives

∂H

∂c
= u′(c)− µ

and
∂H

∂k
= µ(A− δ)

So we can write these optimality conditions as

u′(c(t)) = µ(t), and µ̇(t) = (ρ+ δ − A)µ(t)

Using u′′(c(t))ċ(t) = µ̇(t) we can combine these to get the consumption Euler equation

ċ(t)

c(t)
=
A− δ − ρ
σ(c(t))

, σ(c) ≡ −u
′′(c)c

u′(c)

Now specifically we have u(c) = log c so that σ(c) = 1 meaning that for the problem at hand
this simplifies to just

ċ(t)

c(t)
= A− δ − ρ

We also have the resource constraint

k̇(t) = (A− δ)k(t)− c(t)

These are two differential equations in c(t) and k(t). To pin down the dynamics exactly we also
need two boundary conditions. One boundary condition is the given initial capital k(0) > 0.
The other boundary condition is the transversality condition, which can be written

lim
T→∞

e−ρTu′(c(T ))k(T ) = 0

where u′(c) = 1/c.

(b) Let r ≡ A− δ so that the consumption Euler equation is just

ċ(t)

c(t)
= r − ρ

Notice that the RHS is a constant, r−ρ, and does not depend on k(t). With the linear production
function there is no diminishing returns to capital so the marginal product of capital does not
depend on k(t).

In terms of a phase diagram, the c(t) flows always point the same way, with c(t) always rising
if r > ρ and always falling if r < ρ. From the resource constraint we have

k̇(t) > 0 ⇔ rk(t) > c(t)
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In other words, the k̇(t) = 0 isocline c = rk is a straight line through the origin with slope
r > 0. The k̇(t) = 0 isocline divides the (k, c) plane into two regions, one below the curve where
consumption is sufficiently low c(t) < rk(t) so that the capital stock is increasing, and the other
above the curve where consumption is sufficiently high c(t) > rk(t) so that the capital stock is
decreasing.

If r > ρ then consumption grows forever and hence does not converge to a steady state c∗. If
instead r < ρ then consumption falls forever and asymptotically approaches the steady state
c∗ = k∗ = 0. Graphically, steady-states are found where the ċ(t) = 0 isocline intersects the
k̇(t) = 0 isocline. The latter is a straight line through the origin with slope r > 0. If r 6= ρ, the
former is just the origin and so the only possible steady state is at the origin and moreover this
can only be approached if r < ρ.

(c) We will solve for these dynamics by recasting the problem as a second order differential equation
in k(t) and then using the method of undetermined coefficients. The resource constraint says

k̇(t) = rk(t)− c(t)

Differentiating with respect to t then gives

k̈(t) = rk̇(t)− ċ(t)

But since ċ(t) = (r − ρ)c(t) and c(t) = rk(t)− k̇(t) this is

k̈(t) = rk̇(t)− (r − ρ)(rk(t)− k̇(t))

Collecting terms we can write this as

k̈(t)− (r + g)k̇(t) + grk(t) = 0

where g ≡ r − ρ is the growth rate of consumption (which may be positive or negative). Now
guess that k̇(t) = λk(t), i.e., that k(t) = eλtk(0), for some coefficient λ to be determined. This
guess implies k̈(t) = λk̇(t) = λ2k(t) so for this guess to work it would have to be the case that[

λ2 − (r + g)λ+ gr
]
k(t) = 0

for any k(t) > 0. But then this can only work if the term in square brackets is zero, i.e., if λ is
a root of the characteristic polynomial

p(λ) = λ2 − (r + g)λ+ gr = 0

Applying the quadratic formula, the roots are

λ1 , λ2 =
(r + g)±

√
(r + g)2 − 4gr

2

=
(r + g)±

√
(r − g)2

2

= r , g
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In short, the roots are λ1 = r and λ2 = g. Intuitively it seems that we will want the root λ = g

so that capital and consumption grow at the same rate. To see the problem with λ = r, recall
that the resource constraint says

k̇(t) = rk(t)− c(t)

But then if we choose λ = r we have k̇(t) = rk(t) and hence c(t) = 0 and this cannot be optimal.
Any feasible choice of consumption does better than this, so this cannot be the consumption
path that the solves the planner’s problem (not surprisingly, it also violates the transversality
condition). By contrast, if we choose λ = g we have k̇(t) = gk(t) so that from the resource
constraint we have

c(t) = rk(t)− k̇(t) = (r − g)k(t) = ρk(t)

So indeed this solution implies that consumption and capital are proportional to each other and
grow (or shrink) at the common rate g. To get this path, we then need to set c(0) = ρk(0).

To summarize, the optimal trajectories for c(t), k(t) are, starting from the initial k(0),

c(t) = egtρk(0), k(t) = egtk(0), g = r − ρ

These trajectories satisfy the transversality condition

lim
T→∞

e−ρTu′(c(T ))k(T ) = lim
T→∞

e−ρT
k(T )

c(T )
= lim

T→∞
e−ρT

egTk(0)

egTρk(0)
= lim

T→∞
e−ρT

1

ρ
= 0

Notice that the consumption function c = ρk that pins down the initial c(0) simply says to
set flow consumption such that the ‘present-value’ of consumption c(t)/ρ is equal to the ‘stock
of wealth’. This is a simple version of the permanent income hypothesis. Graphically, if the
consumption function c = ρk is flatter than the k̇(t) = 0 isocline c = rk (i.e., if r > ρ), then
the initial consumption c(0) = ρk(0) < rk(0) is below the k̇(t) = 0 isocline and the capital
stock grows forever (with consumption growing forever) because the net marginal product of
capital r = A − δ is higher than the discount rate ρ. But if the consumption function c = ρk
is steeper than the k̇(t) = 0 isocline c = rk (i.e., if r < ρ), then the initial consumption
c(0) = ρk(0) > rk(0) is above the k̇(t) = 0 isocline and the capital stock shrinks towards k∗ = 0
with consumption likewise shrinking towards c∗ = 0 because the net marginal product of capital
r = A− δ is lower than the discount rate ρ.

(d) We have the differential equations ċ(t) = gc(t) and k̇(t) = rk(t)− c(t) which can be written as
the 2× 2 system (

ċ(t)

k̇(t)

)
=

(
g 0
−1 r

)(
c(t)
k(t)

)
Notice that the determinant of this matrix is a11a22−a12a21 = gr and the trace is a11+a12 = g+r
and indeed the two roots of this system are g and r, as calculated in part (c) above. So this
system definitely has one unstable root, λ1 = r > 0. If g = r− ρ < 0 it has one stable root but
if g = r−ρ > 0 it has two unstable roots. So if g < 0 this system is a saddle and the only stable
trajectory is that associated with g < 0 and c(t) → 0 and k(t) → 0 as t → ∞. If g > 0 then
the system is unambiguously unstable and we saw in part (c) that the solution is for c(t)→∞
and k(t)→∞ as t→∞.

The linear production function y = Ak does not satisfy the Inada conditions. If parameters
are conducive to saving, in particular, if the net marginal product of capital is greater than
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the rate of time preference, A − δ > ρ, then this allows for unbounded capital accumulation
and consumption without running into diminishing returns. But likewise if parameters are not
conducive to growth, in particular, if the net marginal product of capital is lower than the rate
of time preference, A − δ < ρ, there is nothing to prevent the economy collapsing completely.
That is, with the linear production function y = Ak there is no ‘stabilizing’ tendency of the
marginal product of capital to increase as the capital stock falls.


