

Advanced Macroeconomics Tutorial #1: Solutions

- 1-2. To be done in class.
 - 3. Solow-Swan model. Consider a standard Solow-Swan model in continuous time with Cobb-Douglas production function $y = k^{\alpha}$, constant savings rate s, depreciation rate δ , productivity growth g and employment growth n.
 - (a) Derive expressions for the steady state values k^*, y^*, c^* in terms of the model parameters s, δ, g, n and α .
 - (b) Use a diagram to explain how an increase in s affects k^*, y^*, c^* . Does this change in s increase or decrease long run output and consumption per worker? Explain.
 - (c) Use a diagram to explain how an increase in α affects k^*, y^*, c^* . Does this change in α increase or decrease long run output and consumption per worker? Explain.

SOLUTIONS:

(a) Steady state capital k^* solves

$$sf(k^*) = (\delta + g + n)k^*$$

Hence with $y = f(k) = k^{\alpha}$ we have the solution (ignoring the trivial $k^* = 0$ case)

$$k^* = \left(\frac{s}{\delta + g + n}\right)^{\frac{1}{1 - \alpha}}$$

And therefore

$$y^* = \left(\frac{s}{\delta + g + n}\right)^{\frac{\alpha}{1 - \alpha}}$$
$$c^* = (1 - s) \left(\frac{s}{\delta + g + n}\right)^{\frac{\alpha}{1 - \alpha}}$$

(b) An increase in s unambiguously increases k^* and hence increases y^* . Whether an increase in s increases c^* depends on where the level of s is relative to the 'golden rule' level (which with this Cobb-Douglas production function, is equal to α , see Lecture 2 slide 18). If $s < \alpha$ then a marginal increase in s increases c^* but if $s > \alpha$ then a marginal increase in s decreases c^* . (c) An increase in α increases k^* only if the capital/output ratio

$$\frac{k^*}{y^*} = \frac{s}{\delta + g + n}$$

is greater than 1. If $k^*/y^* > 1$ then a higher α increases k^* and hence increases y^* and c^* . In this situation, the parameters are conducive to capital accumulation (the savings rate is high relative to effective depreciation), so less curvature in the production function (α higher) makes for a larger steady state level of capital per effective worker. If $k^*/y^* < 1$ then a higher α decreases k^* and hence decreases y^* and c^* . In this situation, the parameters are not conducive to capital accumulation (the savings rate is low relative to effective depreciation), so less curvature in the production function makes for a lower steady state level of capital per effective worker.

4. Linear production function. Suppose the production function is linear y = k and for simplicity suppose no productivity or employment growth, g = n = 0. Does the Solow-Swan model have a steady state capital stock in this setting? Why or why not? Explain the dynamics of k(t) in this economy. How do these dynamics depend on the values of s and δ ? Explain. What standard assumptions about the production function does this example violate?

SOLUTION:

With y = f(k) = k, capital accumulation is given by

$$k(t) = sk(t) - \delta k(t) = (s - \delta)k(t)$$

(since g = n = 0). Steady states k^* are given by points such that $\dot{k}(t) = 0$. In this case there is generally no steady state except the trivial one at $k^* = 0$. In the 'knife-edge' case where $s = \delta$, any k is a steady state. More generally, for $s \neq \delta$, either (i) the savings rate is greater than depreciation so that $\dot{k}(t) = (s - \delta)k(t) > 0$ for all t and the capital stock grows without bound, or (ii) the savings rate is less than depreciation so that $\dot{k}(t) = (s - \delta)k(t) < 0$ for all t and the capital stock shrinks towards 0. This linear production y = f(k) = k function has positive marginal product, f'(k) = 1, but does not exhibit diminishing returns f''(k) = 0. Moreover, since f'(k) = 1 for all k, this linear production function does not satisfy the usual Inada conditions $[f'(0) = \infty$ and $f'(\infty) = 0]$. In particular, the failure of the first Inada condition $f'(0) = \infty$ exposes the economy to $k(t) \to 0$ when $s < \delta$ while the failure of the second Inada condition $f'(\infty) = 0$ allows the economy to experience unbounded growth $k(t) \to \infty$ when $s > \delta$. In this latter case, the basic conclusion of the Solow model — i.e., that capital accumulation alone cannot sustain long run growth — is overturned.

5. Inada conditions. Consider a production function in intensive form y = f(k). Briefly explain the role played by the Inada conditions $f'(0) = \infty$ and $f'(\infty) = 0$ in analyzing the Solow-Swan model. In particular, suppose f'(k) > 0 and f''(k) < 0 but that the Inada conditions are *not* satisfied. What possibilities does this lead to?

SOLUTION:

As alluded to above, the Inada conditions guarantee the existence of an interior steady state $k^* > 0$. For simplicity, again suppose that g = n = 0. Then if

$$sf'(0) < \delta$$

we have that investment is never more than depreciation so that the only steady state is the trivial $k^* = 0$ and capital shrinks toward this steady state $k(t) \to 0$. At the other extreme, if

$$sf'(\infty) > \delta$$

we have that investment is never less than depreciation, again the only steady state is the trivial $k^* = 0$ but capital grows without bound, $k(t) \to \infty$, away from this steady state. Notice that the usual Inada conditions $f'(0) = \infty$ and $f'(\infty) = 0$ are *sufficient* to ensure these cases do not arise, but are not *necessary*. The necessary conditions are that

$$f'(\infty) < \frac{\delta}{s} < f'(0)$$

The linear production function y = f(k) = k implies that *one* of these Inada conditions fails, which one depends on the magnitudes of s and δ .