

ECON40002 Chris Edmond

Advanced Macroeconomics Tutorial #10

1. Practice with Bellman values. Consider a discrete time setting t = 0, 1, 2, ... where a risk-neutral worker receives period utility w_t from a stream of wage payments. Let W_t denote the present value of these payments discounted at constant rate r > 0

$$W_t \equiv \sum_{s=t}^{\infty} e^{-r(s-t)} w_s$$

(supposing the sum is well-defined, e.g., that $w_t \to \bar{w} > 0$ as $t \to \infty$).

(a) Show that the present value W_t satisfies the difference equation

$$W_t = w_t + e^{-r} W_{t+1} \tag{1}$$

(b) Now let the period length be $\Delta > 0$ so that $t = 0, \Delta, 2\Delta, \ldots$ with total wage payment $w_t\Delta$ over a period of length Δ . Explain why the present value W_t now satisfies the difference equation

$$W_t = w_t \Delta + e^{-r\Delta} W_{t+\Delta}$$

(c) Now let the period length $\Delta \to 0$. Show that in this continuous time limit, the present value satisfies the differential equation

$$rW(t) = w(t) + \dot{W}(t) \tag{2}$$

Now consider again the simple discrete time $t = 0, 1, 2, \ldots$ setting with wage payments w_t . Suppose that the wage is stochastic and can take on two values, $w_t \in \{w_l, w_h\}$ with $0 < w_l < w_h$. Suppose that if the current wage is w_l then with probability p_{ll} the wage next period remains w_l but with probability $1 - p_{ll}$ the wage next period jumps up to w_h . Likewise if the current wage is w_h then with probability p_{hh} the wage next period remains w_h but with with probability p_{hh} the wage next period remains w_h but with with probability $1 - p_{hh}$ the wage next period remains w_h but with with probability $1 - p_{hh}$ the wage next period drops to w_l . In short

$$p_{ll} = \operatorname{Prob}[w_{t+1} = w_l \mid w_t = w_l]$$
$$p_{hh} = \operatorname{Prob}[w_{t+1} = w_h \mid w_t = w_h]$$

- (d) Let W_t^l denote the present value of wages conditional on $w_t = w_l$. Likewise let W_t^h denote the present value of wages conditional on $w_t = w_h$. What system of difference equations do these values solve?
- (e) Now again consider periods of length $\Delta > 0$ and suppose that over a period of length Δ the probability of remaining in state l is $p_{ll} = e^{-\lambda_h \Delta}$ for some $\lambda_h > 0$ and similarly the probability of remaining in state h is $p_{hh} = e^{-\lambda_l \Delta}$ for $\lambda_l > 0$. Again let the period length $\Delta \to 0$. What system of differential equations do $W^l(t), W^h(t)$ solve? How do the present values depend on λ_l, λ_h in steady state? Explain.

- 2. Mortensen-Pissarides model. Consider a search model of the labor market in continuous time $t \ge 0$. Risk neutral workers and firms discount at constant rate r > 0. Workers and firms are matched via a standard constant-returns-to-scale matching function F(u, v) where u(t) denotes the unemployment rate and v(t) the vacancy rate at time t. When a match forms, a firm is able to produce a constant amount of output z > 0. The worker receives a wage of w(t) and the firm makes a flow profit of z w(t). Job matches between workers and firms are destroyed at an exogenous rate $\delta > 0$. Firms can create jobs by posting vacancies with a flow cost κz proportional to z. There is free-entry into job creation. When unemployed, workers receive constant flow utility $b \le w(t)$ from unemployment benefits.
 - (a) Let V(t), J(t) denote the value to a firm of a vacancy and a filled job respectively and let U(t), W(t) denote the value to a worker of unemployment and employment respectively. What are the Bellman equations that describe these four values? Provide an intuitive explanation for each of these equations.
 - (b) Explain how the Bellman equations for U(t), W(t) relate to those you derived in Question 1 part (e). Give as much detail as you can.

Now suppose that wages are determined by Nash-Bargaining between a worker and firm such that in equilibrium the worker's surplus is a constant fraction $\beta \in (0, 1)$ of the total match surplus

$$W(t) - U(t) = \beta S(t),$$
 $S(t) \equiv W(t) - U(t) + J(t) - V(t)$

Suppose also that free entry drives the value of a vacancy to V(t) = 0 for all t.

- (c) Let the matching function be $F(u, v) = u^{\alpha}v^{1-\alpha}$. Explain how the steady state wage, labor market tightness $\theta = v/u$ and unemployment rate are determined.
- (d) Now suppose the parameter values r = 0.01, $z = \kappa = 1$, b = 0.4 and $\alpha = \beta = 0.5$. Calculate the steady state wage, labor market tightness, unemployment rate, vacancy rate, and vacancy filling rate q = F(u, v)/v. If productivity increases from z = 1 to z = 1.1 what happens to each of these variables? What about if r increases from r = 0.01to r = 0.02? Give intuition for your answers.
- (e) Now consider what happens if the wage is fixed at some exogenous level \bar{w} . Suppose in particular that \bar{w} equals the value you found in part (d) for z = 1 and then productivity increases to z = 1.1 holding the wage fixed at \bar{w} . What happens to labor market tightness and the unemployment and vacancy rates? How if at all do your answers differ to those you found in part (d)? Explain.