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Advanced Macroeconomics
Problem Set #3: Solutions

1. Inflation dynamics under optimal monetary policy. Suppose the monetary authority
cannot commit to future actions and seeks to minimize the one-period loss function

L =
1

2

(
x̂2t + λπ̂2

t

)
, λ > 0

subject to the new Keynesian Phillips curve

π̂t = βEt {π̂t+1}+ κx̂t + ut

where the cost push shocks ut follow a stationary AR(1) process

ut+1 = φut + εt+1, 0 ≤ φ < 1

and where the innovations εt are IID normal with mean zero and variance σ2
u.

(a) Derive the monetary authority’s optimal discretionary policy for inflation and the output
gap and the dynamics of inflation implied by this discretionary policy.

(b) Guess that, in this scenario, inflation and the output gap are linear in the cost push
shock, π̂t = ψπuut and x̂t = ψxuut for two coefficients ψπu and ψxu. Use the method of
undetermined coefficients to solve for ψπu and ψxu. Explain intuitively how inflation and
the output gap respond to a cost push shock.

Now suppose the parameter values are κ = 0.15, β = 0.95, φ = 0.8, σu = 0.015 and that the
monetary authority’s weight on inflation is λ = 1.

(c) Simulate a sequence of cost push shocks ut of length T = 250 and use this to generate
simulated sequences of inflation and the output gap. Does a scatterplot of inflation and
the output gap reveal any relationship between inflation and the output gap? Are times
of economic slack times of low inflation? Why or why not? Give intuition for your results

(d) Suppose you estimate a reduced form Phillip Curve relationship by OLS

π̂t = a+ bx̂t + εt

Is the estimated relationship between inflation and the output gap upward or downward
sloping? Why? How do the OLS coefficients a, b relate to the underlying parameters of
the model? How do the OLS residuals εt relate to the underlying shocks? Explain.
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Solutions:

(a) Let ξt ≡ βEt {π̂t+1} + ut denotes terms that the monetary authority takes as given. Sub-
stituting out π̂t in the objective, the monetary authority chooses x̂t to minimize

1

2

(
x̂2t + λ(κx̂t + ξt)

2
)

The first order condition for this problem can be written

x̂t = −κλπ̂t

so that the monetary authority ‘leans-against-the-wind’ in the sense of reducing the output
gap when inflation rises. Then plugging this into the new Keynesian Phillips curve gives

π̂t = βEt {π̂t+1} − κ2λπ̂t + ut

or

π̂t =
β

1 + κ2λ
Et {π̂t+1}+

1

1 + κ2λ
ut

This is a single stochastic difference equation in π̂t taking as given the process for the cost
push shocks ut.

(b) If π̂t = ψπuut then Et {π̂t+1} = ψπuφut so that on plugging these expressions into the
stochastic difference equation for inflation we have

ψπuut =
β

1 + κ2λ
ψπuφut +

1

1 + κ2λ
ut

Since this must hold for every ut we have the restriction

ψπu =
β

1 + κ2λ
ψπuφ+

1

1 + κ2λ

and hence

ψπu =
1

(1− φβ) + κ2λ

Since the discretionary policy is x̂t = −κλπ̂t we then have

ψxu = −κλψπu = − κλ

(1− φβ) + κ2λ

Hence a cost push shock ut > 0 increases inflation π̂t > 0 and reduces the output gap
x̂t < 0 (just like an adverse aggregate supply shock in a static AS-AD model).

(c)-(d) The results are shown in Figure 1 below. The scatterplot shows a pronounced negative
correlation between economic activity as measured by the output gap x̂t and inflation π̂t.
Naively, we might take this to demonstrate the absence of a ‘Phillips curve’ or aggregate
supply relationship like π̂t = κx̂t + ξt since that would be an upward sloping relationship
between x̂t and π̂t. The problem with this thinking is that both x̂t and π̂t are endogenous.
In general, there is no particular reason to see either an ‘AS curve’ (or ‘AD curve’) in a
reduced form scatterplot. What we see in the scatterplot depends on the relative impor-
tance of the underlying shocks. This model has only supply shocks and no demand shocks
so what we see is a tracing out of the ‘AD curve’ implied by the optimal monetary policy.
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More formally, since

π̂t =
1

(1− φβ) + κ2λ
ut, and x̂t = − κλ

(1− φβ) + κ2λ
ut

we have

Corr[x̂t, π̂t] =
Cov[x̂t, π̂t]√
Var[x̂t]Var[π̂t]

=

(
− κλ

(1−φβ)+κ2λ

)(
1

(1−φβ)+κ2λ

)
Var[ut](

κλ
(1−φβ)+κ2λ

)(
1

(1−φβ)+κ2λ

)
Var[ut]

= −1

Clearly the regression intercept a = 0 while the regression slope coefficient b is given by

b =
Cov[x̂t, π̂t]

Var[x̂t]
=

(
− κλ

(1−φβ)+κ2λ

)(
1

(1−φβ)+κ2λ

)
Var[ut](

κλ
(1−φβ)+κ2λ

)2
Var[ut]

= − 1

κλ

That is, the regression identifies the monetary policy ‘targeting rule’ x̂t = −κλπ̂t not any-
thing to do with the AS curve. Monetary policy is endogenously engineering a negative
correlation between inflation and the output gap to offset the cost push shocks. The re-
gression coefficient b captures the strength of that policy reaction. The regression residuals
εt are identically zero independent of the actual structural shocks ut.

So even though there is an ‘AS curve’ in the model, we don’t see it in the reduced form
relationship because there is no demand-side variation that could identify it. Please keep
this example in mind when someone says that the lack of a reduced form relationship
between inflation and unemployment proves there is no Phillip curve!

The same logic is pervasive in economics. If we do a scatterplot of prices and quantities,
we don’t generally expect to see either a supply curve or a demand curve but instead a
cloud of points. The fact that we see a cloud of points does not invalidate the supply and
demand curve analysis, but we we need disturbances that shift demand but not supply to
identify the supply curve and disturbances that shift supply but not demand to identify
the demand curve. No one would say that supply curves ‘don’t exist’ simply because they
cannot see a reduced form upward sloping relationship between price and quantity.

2. Discretionary monetary policy in a liquidity trap. Consider a continuous-time new
Keynesian model with dynamic IS curve

ẋ(t) =
1

σ
(i(t)− π(t)− rn(t))

and Phillips curve
π̇(t) = ρπ(t)− κx(t)
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Here x(t) denotes the log output gap, π(t) the instantaneous inflation rate, i(t) the nominal
interest rate, and rn(t) the natural real rate. The parameters σ, ρ, κ have their usual meanings.

Suppose that the natural real rate follows

rn(t) =


r t ∈ [0, T )

with r < 0 < r
r t ∈ [T,∞)

for some given horizon T > 0 with r sufficiently negative that the ZLB constraint on i(t) is
binding for t ∈ [0, T ). Suppose that for rn(t) = r > 0 it is possible to implement i(t) = r with
a sufficiently reactive interest rate rule.

In this question you will study outcomes under monetary policy discretion.

(a) Explain, qualitatively, how inflation π(t) and the output gap x(t) are determined both
during and after the liquidity trap under monetary policy discretion.

Now suppose the parameter values: σ = 1, κ = 0.5, and ρ = 0.05 per year with r = +ρ, r = −ρ
and T = 2 years.

(b) Solve for the time-path of π(t) and x(t) during and after the liquidity trap. Plot π(t) and
x(t) against time and against each other. Explain your findings.

(c) How would your answers differ if instead κ = 0.25? or κ = 0.75? What if instead T = 1
years? or T = 3 years? And what about if σ = 0.5? or σ = 2? Give intuition for your
answers.

Solutions:

(a) After the liquidity trap, i.e., for t ∈ [T,∞) monetary policy is able to implement i(t) =
r > 0 via a sufficiently reactive interest rate rule, for example

i(t) = r + φππ(t), φπ > 1

Under such a rule, we know that in the absence of shocks we simply have π(t), x(t) = (0, 0)
for all t ∈ [T,∞) and in particular have π(T ), x(T ) = (0, 0). This then serves as a ‘terminal
condition’ for the dynamics during the liquidity trap, i.e., for t ∈ [0, T ). During the
liquidity trap we have rn(t) = r < 0 and i(t) = 0 so that the change in the output gap is

ẋ(t) = − 1

σ
(π(t) + r)

Thus ẋ(t) > 0 whenever π(t) + r < 0 i.e., whenever π(t) < −r. Figure 2 below shows
the associated phase diagram in in (π, x) space. The ẋ(t) = 0 isocline is a vertical line
at π = −r and divides the (π, x) plane into two halves, one to the left of π = −r with
relatively low inflation where the output gap is increasing and another to the right of
π = −r with relatively high inflation where the output gap is decreasing. Notice that on
the left side where inflation is relatively low, the real interest rate r(t) = i(t)−π(t) = −π(t)
is relatively high — this is of course why the IS curve gives ẋ(t) > 0 in this region. Similarly
we have from the new Keynesian Phillips curve that

π̇(t) = ρπ(t)− κx(t)
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so that π̇(t) > 0 whenever ρπ(t) − κx(t) > 0 i.e., whenever x(t) < (ρ/κ)π(t). In terms of
the phase diagram, the π̇(t) = 0 isocline is a straight line x = (ρ/κ)π and again divides
the (π, x) phase plane into two halves, one above the line x = (ρ/κ)π where inflation is
decreasing and the other below the line x = (ρ/κ)π where inflation is increasing. These
dynamics are illustrated in Figure 2 below. Notice that the intersection of the two isoclines
picks out a pseudo ‘steady state’ (π̄, x̄) = (−r,−(ρ/κ)r) where neither inflation not the
output gap are changing. This pseudo steady state vanishes when the liquidity trap is over
(i.e., when rn(t) reverts to r). Inspecting the phase diagram, we see that the only region
where the dynamics can begin and converge to x(T ), π(T ) = (0, 0) is in the southwest
quadrant (to the right of the π = −r line, below the x = (ρ/κ)π line) where both the
output gap and inflation are increasing both from negative initial levels. In short, these
dynamics imply that the economy begins with a recession x(0) < 0 and deflation π(0) < 0
that is then gradually alleviated as the economy approaches the end of the liquidity trap.
In no other region of the phase plane do the dynamics approach (0, 0) as t→ T .

(b) To solve for the time-path of inflation and the output gap, we first reduce the system to
a second order differential equation in inflation and then solve that differential equation.
To do this, begin by differentiating the new Keynesian Phillips curve to get

π̈(t) = ρπ̇(t)− κẋ(t)

Then substitute in the IS curve to get

π̈(t) = ρπ̇(t) +
κ

σ
(π(t) + r)

or
π̈(t)− ρπ̇(t)− κ

σ
π(t) =

κ

σ
r

To solve this second order linear differential equation, we first solve the associated homo-
geneous equation

π̈(t)− ρπ̇(t)− κ

σ
π(t) = 0

The roots of this are given by the quadratic

r2 − ρr − κ

σ
= 0

Since the trace is r1 + r2 = ρ > 0 and the determinant is r1r2 = −(κ/σ), we know that
one root is negative and one root is positive. Since we have a given terminal condition
π(T ), x(T ) = (0, 0) we cannot disregard the dynamics associated with the unstable root
(in other words, we don’t need to worry about solutions blowing up as t → ∞ since here
we have finite t→ T ). Hence solutions of the homogeneous equation have the form

π(t) = c1e
r1t + c2e

r2t

for some constants to be determined (as part of the general solution, see below). We now
need to find a particular solution. Since the exogenous term in the differential equation is
a constant, it’s natural to guess a constant solution say π(t) = π̄ for which π̈(t) = π̇(t) = 0.
For this to be a solution we need

0− ρ0− κ

σ
π̄ =

κ

σ
r
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or
π̄ = −r > 0

This is just the level of inflation associated with the pseudo steady state from part (a)
above. The general solution therefore has the form

π(t) = c1e
r1t + c2e

r2t + π̄

where r1, r2 are the roots of the quadratic, π̄ = −r > 0 and c1, c2 are two constants to be
determined. Notice that this general solution implies that initial inflation is simply

π(0) = c1 + c2 + π̄

To determine the constants, we use the terminal conditions π(T ) = 0 and x(T ) = 0. The
former implies

π(T ) = c1e
r1T + c2e

r2T + π̄ = 0

This is one equation in the two unknowns c1, c2 given that we have determined r1, r2, π̄
and that T is a parameter. Now if π(T ) = 0 and x(T ) = 0 we also know from the new
Keynesian Phillips curve that π̇(T ) = 0 too. Differentiating the general solution with
respect to t gives

π̇(t) = c1r1e
r1t + c2r2e

r2t

Hence for t = T we have
π̇(T ) = c1r1e

r1T + c2r2e
r2T = 0

This constitutes a second equation in the two unknowns c1, c2. In short we have the linear
system (

er1T er2T

r1e
r1T r2e

r2T

)(
c1
c2

)
+

(
π̄
0

)
=

(
0
0

)
to be solved for c1, c2. Doing the algebra gives

c1 = +
r2

r1 − r2
e−r1T π̄

and
c2 = − r1

r1 − r2
e−r2T π̄

Plugging these back into the general solution and collecting terms

π(t) = π̄ − 1

r1 − r2
{
r1e

−r2(T−t) − r2e−r1(T−t)
}
π̄

so that indeed π(t)→ 0 as t→ T . The attached Matlab file ps3 question2.m implements
this solution for the given parameter values. The roots work out to be r1 = 0.7325 and
r2 = −0.6825 and π̄ = ρ = 0.05 so that for T = 2 the constants are c1 = −0.0056 and
c2 = −0.1014. The initial level of deflation is then π(0) = c1 + c2 + π̄ = −0.0569 or about
−5.69% on an annual basis. Finally we can recover the initial output gap from the new
Keynesian Phillips curve and our solution for inflation

x(0) =
ρπ(0)− π̇(0)

κ
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Since π̇(0) > 0 in this part of the phase space, we know x(0) < 0 and indeed x(0) lies
below the line x = (ρ/κ)π. Evaluating the expression above gives x(0) = −0.1359, a severe
recession with output about 13.59% below its natural level. The dynamics are shown in
Figure 3 below. To construct this, I took a linearly spaced set of 200 discrete points to
approximate the interval [0, T ] and evaluated the solution given above at those discrete
points. The left hand panel shows π(t), x(t) in the phase plane, the right hand panel shows
π(t) and x(t) over time.

(c) If instead we have κ = 0.25 then prices are less flexible so that the initial output loss and
deflation are smaller than in part (b) above. Specifically we now have π(0) = −0.0263
which is less deflation that the −0.0569 we had in (b) and similarly x(0) = −0.1171, a
somewhat smaller output loss than the −0.1359 we had in (b). In the liquidity trap, more
rigid prices reduce the output loss. This is because a low value of κ means that any given
output loss x(t) < 0 creates less deflation π(t) < 0 via the Phillips curve so that real
rates r(t) = −π(t) are lower than they would otherwise be. Then from the IS curve we
have that lower real rates implies lower output gap growth ẋ(t) so that to reach x(T ) = 0
in the same amount of time T we must start from a closer point away, i.e., from a x(0)
that is closer to 0. Similarly, if instead we have κ = 0.75 then prices are more flexible so
that the initial output loss and deflation are greater than in part (b) above. Specifically
we now have π(0) = −0.0925 and x(0) = −0.1566. In the liquidity trap, more flexible
prices makes the output loss worse. This is because a high value of κ means that any given
output loss x(t) < 0 creates more deflation π(t) < 0 via the Phillips curve so that real rates
r(t) = −π(t) are higher than they would otherwise be. Then from the IS curve we have
that higher real rates implies higher output gap growth ẋ(t) so that to reach x(T ) = 0 in
a fixed amount of time T we must start from further away, i.e., from lower x(0).

If T = 1 then the liquidity trap is shorter and the initial output loss and deflation are
again less than in part (b). Specifically we now have π(0) = −0.0128, less deflation than
in (b), and similarly x(0) = −0.0542, a smaller output loss than in (b). This is because
the eigenvalues of the system are still r1 = 0.7325 and r2 = −0.6825 (i.e., the speed of
adjustment is independent of T ) so that if we are to reach the same terminal point (0, 0)
travelling at the same speed but are to take a shorter interval of time [0, T ) to make
that journey then we must be starting from a closer point (i.e., from initial conditions
π(0), x(0) that are closer to 0, 0). Similarly, if instead we had T = 3 then the liquidity
trap lasts longer and the initial output loss and deflation are again greater than in part
(b). Specifically we now have π(0) = −0.1533 and x(0) = −0.2852. This is because the
eigenvalues of the system are still r1 = 0.7325 and r2 = −0.6825 so that if we are to reach
the same terminal point (0, 0) travelling at the same speed but are to take a longer interval
of time [0, T ) to make that journey then we must be starting from further away (i.e., from
lower π(0), x(0)).

Finally, if σ = 0.5 then the intertemporal elasticity of substitution 1/σ is higher so that the
output gap is more responsive to the real interest rate. Accordingly, any given deflation
π(t) < 0 translates into a larger fall in output and hence more actual deflation. Specifically
we now have π(0) = −0.1334, more deflation than in (b), and a whopping x(0) = −0.3584,
a much larger fall in output than in (b). Similarly, if instead σ = 2 then the intertemporal
elasticity of substitution 1/σ is lower so that the output gap is less responsive to the real
interest rate and any given deflation π(t) < 0 translates into a smaller fall in output and
hence less actual deflation. Specifically we now have π(0) = −0.0263 and x(0) = −0.0585.
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3. Unemployment fluctuations in a discrete time search model. Let time be t = 0, 1, 2, ....
Risk neutral workers and firms have common time discount factor β and are matched according
to a Cobb-Douglas matching function

F (ut, vt) = m̄ u1−αt vαt , m̄ > 0, 0 < α < 1

where ut denotes the unemployment rate and vt the vacancy rate at time t. Let θt ≡ vt/ut
denote labor market tightness and let f(θt) and q(θt) denote the job finding probability and
vacancy filling probability respectively. If a match forms in period t then the worker and firm
are able to start producing in period t + 1. Within a match, the firm’s productivity zt > 0
follows an exogenous stochastic process with long-run mean z̄ > 0. The worker receives a wage
wt and the firm makes profits of zt−wt. Job matches are exogenously destroyed with probability
δ ∈ (0, 1) per period. Firms can create jobs by posting vacancies with a per period cost κz̄ > 0.
When unemployed, workers receive constant flow utility bz̄ ≤ wt from unemployment benefits.

The aggregate unemployment rate evolves according to

ut+1 − ut = δ(1− ut)− f(θt)ut

given some initial unemployment rate u0 > 0.

(a) Let Vt and Jt denote the value to a firm of a vacancy and a filled job. These satisfy the
discrete time Bellman equations

Vt = −κz̄ + βEt{ q(θt)Jt+1 + (1− q(θt))Vt+1 }
Jt = zt − wt + βEt{ δVt+1 + (1− δ)Jt+1 }

Similarly let Ut and Wt denote the value to a worker of unemployment and employment.
These satisfy the discrete time Bellman equations

Ut = bz̄ + βEt{ f(θt)Wt+1 + (1− f(θt))Ut+1 }
Wt = wt + βEt{ δUt+1 + (1− δ)Wt+1 }

Provide an intuitive interpretation of these four Bellman equation.

Now suppose the wage is determined by Nash-Bargaining so that in equilibrium the worker’s
surplus is a constant fraction λ ∈ (0, 1) of the total match surplus

Wt − Ut = λSt, St ≡ Wt − Ut + Jt − Vt
Suppose also that free-entry drives the value of a vacancy to Vt = 0.

(b) Explain how to solve for the non-stochastic steady state values of labor market tightness,
wages, the unemployment rate and the vacancy rate in this setting. Explain intuitively
the effects of a change in average productivity z̄.

Now suppose that productivity follows a stationary AR(1) process in logs

log zt+1 = (1− φ) log z̄ + φ log zt + εt+1, 0 < φ < 1

where the innovations εt are IID N(0, σ2
ε).

Let the parameter values be α = 0.5, β = 1/1.02, δ = 0.04, φ = 0.95, σε = 0.01, z̄ = 1, m̄ = 0.5,
b = 0.4, λ = 0.5, and κ = 0.28.
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(c) Solve for the non-stochastic steady state values of labor market tightness, wages, the
unemployment rate and the vacancy rate.

(d) Use Dynare to solve the model. Suppose the economy is at steady state and that at
t = 0 there is a 1% innovation to productivity, i.e., ε0 = 0.01. Use Dynare to calculate
and plot the impulse response functions for the log-deviations of labor market tightness,
wages, the unemployment rate and the vacancy rate for T = 100 periods after the shock.

(e) Simulate a sequence of productivity ẑt of length T = 500 and use this to generate simulated
sequences of labor market tightness, wages, the unemployment rate and the vacancy rate.
Which of these variables move most closely together? Which is most volatile? Explain.

Solutions:

(a) For a firm, the value of having a filled job Jt is given by the flow profit zt − wt plus the
expected discounted value of its situation next period: with exogenous probability δ the
job is destroyed and the firm switches to having an open vacancy with value Vt+1 and with
probability 1−δ the job is not destroyed and the firm obtains value Jt+1. Likewise the firm’s
value of having a vacancy Vt is given by the flow cost of keeping a vacancy open −κz̄ plus
the expected discounted value of its situation next period: with endogenous probability
q(θt) there is a match and the vacancy is filled so that the firm switches to having a filled
job with value Jt+1 and with probability 1 − q(θt) the vacancy is not filled and the firm
obtains value Vt+1. For a worker, the value of having a job Wt is given by the flow wage
wt plus the expected discounted value of its situation next period: with probability δ the
job is destroyed and the workers switches to being unemployed with value Ut+1 and with
probability 1− δ the job is not destroyed and the worker obtains value Wt+1. Likewise the
worker’s value of being unemployed Ut is given by the flow unemployment benefits bz̄ plus
the expected discounted value of its situation next period: with probability f(θt) there is
a match so that the worker switches to having a job with value Wt+1 and with probability
1− f(θt) the worker remains unemployed and obtains value Ut+1.

(b) In non-stochastic steady state we can write the Bellman equations for the firm

V = −κz̄ + β{q(θ)J + (1− q(θ))V }

J = z̄ − w + β{δV + (1− δ)J}
and for the worker

U = bz̄ + β{f(θ)W + (1− f(θ))U}
W = w + β{δU + (1− δ)W}

And from Nash-Bargaining

W − U =
λ

1− λ(J − V )

The firm’s Bellman equation for a filled job gives

J =
z̄ − w + βδV

1− β(1− δ)
and since V = 0 from free-entry, we also have

J =
z̄ − w

1− β(1− δ) =
κz̄

βq(θ)
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Rearranging this gives

w = z̄ − 1− β(1− δ)
β

κz̄

q(θ)

Now observe that if we define the discount rate r ≡ 1
β
− 1 we get an expression familiar

from the continuous time setup

w = z̄ − (r + δ)
κz̄

q(θ)

This is the ‘marginal productivity condition,’ a downward sloping relationship between θ
and w. Turning now to the worker side of things, from Nash-Bargaining

W − U =
λ

1− λ(J − V ) =
λ

1− λ
κz̄

βq(θ)

And the worker’s Bellman equation for unemployment gives

(1− β)U = bz̄ + βf(θ)
λ

1− λJ = bz̄ +
λ

1− λκz̄θ

since f(θ) = θq(θ). Then from the worker’s Bellman equation for employment

W =
w + βδU

1− β(1− δ)

so that

W − U =
w − (1− β)U

1− β(1− δ)
Using Nash-Bargaining again

w − (1− β)U

1− β(1− δ) =
λ

1− λJ =
λ

1− λ
z̄ − w

1− β(1− δ)

Hence

w − (1− β)U =
λ

1− λ(z̄ − w)

So that on using the expression for (1− β)U above

w = (1− λ)bz̄ + λ(1 + κθ)z̄

This is the ‘wage curve,’ an upward sloping relationship between θ and w. Together, the
wage curve and the marginal productivity condition are two equations that we can solve
for the steady state values w̄, θ̄. Given labor market tightness determined in this way, we
can then back out the unemployment rate ū from the Beveridge curve

ū =
δ

δ + f(θ̄)

and back out vacancies v̄ from v̄ = θ̄ū. Notice that in this setting benefits bz̄ and vacancy
costs κz̄ are both proportional to z̄. This implies that an increase in z̄ shifts up both the
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marginal productivity condition and the wage curve proportionately so that labor market
tightness is unchanged while the wage increases one-for-one with z̄. Since labor market
tightness is unchanged, from the Beveridge curve unemployment is unchanged too. We can
see this more formally by writing the intersection of the marginal productivity condition
and wage curve as

w̄

z̄
= 1− (r + δ)

κ

q(θ̄)
= (1− λ)b+ λ(1 + κθ̄) (∗)

which determines steady state θ̄ independent of z̄ and implies w̄ is proportional to z̄. In
short, in this setting an increase in average labor productivity has no long-run effect on
labor market tightness and hence no long-run effect on unemployment or vacancies and
simply leads to a proportionate increase in the long-run wage.

(c) With the given parameter values, solving (∗) for steady state labor market tightness gives
θ̄ = 1.8192 which implies the steady state wage w̄ = 0.9547. This means that a bit
over 95% of the average product of labor is paid out to workers, leaving flow profits of
z̄ − w̄ = 0.0453 for the firm, a profit rate a bit under 5% per period. Given this value
of labor market tightness we get a job finding probability of f(θ̄) = 0.6744 so that, per
period, about 67% of unemployed workers find a job. Then from the Beveridge curve we
get ū = δ/(δ + f(θ̄)) = 0.04/0.7144 = 0.0560, a steady state unemployment rate of 5.6%.
This also implies that steady state vacancies are v̄ = θ̄ū = 0.1019.

(d) We solve for the following log-linear approximation

ût+1 = ψuuût + ψuz ẑt

ŵt = ψwuût + ψwz ẑt

θ̂t = ψθuût + ψθz ẑt

The attached Dynare file ps3 question3.mod solves the model with the given parameters.
From Dynare we get

POLICY AND TRANSITION FUNCTIONS

w theta u z

u(-1) -0.129006 -0.842853 -0.481588 0

z(-1) 0.809194 2.131194 -1.549122 0.950000

e 0.851783 2.243362 -1.630655 1.000000

so that, for example, ψuu = −0.481588 and ψuz = −1.630655. Figure 4 below shows the
impulse response functions for the key endogenous variables to a one standard deviation
shock to productivity. On impact, labor market tightness and the wage rise (indeed the
response of the wage is almost identical to the response of productivity). With rising
labor market tightness, the job finding rate (not shown) rises and unemployment falls.
Notice that the negative serial correlation coefficient for unemployment ψuu < 0 imparts
some mild short-run negative serial correlation to the dynamics. In the longer run, these
wiggles are sufficiently dampened that the positive serial correlation from the exogenous
productivity shock dominates and we get more familiar looking responses.
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(e) From Dynare we get

THEORETICAL MOMENTS

VARIABLE MEAN STD. DEV. VARIANCE

w -0.0167 0.0317 0.0010

theta 1.9967 0.1011 0.0102

u -3.9581 0.0364 0.0013

z 0.0000 0.0320 0.0010

Figure 5 below shows the simulated time series. Clearly labor market tightness is the most
volatile while wages, unemployment, and productivity are roughly equally volatile. Labor
market tightness, wages, and productivity are nearly perfectly positively correlated with
each other. Unemployment is nearly perfectly negatively correlated with the others.
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Figure 1: Scatter of inflation and output gap under optimal monetary policy
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Figure 2: Phase diagram for discretionary monetary policy in a liquidity trap
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Figure 3: Impulse responses for discretionary monetary policy in a liquidity trap
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Figure 4: Response to productivity shock in search model
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Figure 5: Labor market fluctuations in search model


