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Advanced Macroeconomics
Problem Set #1: Solutions

1. Solow model in continuous time. Consider the Solow model in continuous time with pro-
duction function y = f(k) satisfying the usual properties, constant savings rate s, depreciation
rate δ, productivity growth g and employment growth n.

(a) Use the implicit function theorem to show how an increase in s affects the steady state val-
ues k∗, y∗, c∗. Does this change in s increase or decrease long run output and consumption
per worker? Explain.

Now consider the special case of a Cobb-Douglas production function f(k) = kα.

(b) Derive expressions for the elasticities of capital and output with respect to the savings rate

d log k∗

d log s
,

d log y∗

d log s

How do these depend on the curvature of the production function α? Explain.

(c) Derive an exact solution for the time path k(t) of capital per effective worker.

Now consider the specific numerical values α = 0.3, s = 0.2, δ = 0.05, g = 0.02, n = 0.03.

(d) Calculate and plot the time paths of k(t), y(t), c(t) starting from the initial condition
k(0) = k∗/2. How long is the half-life of convergence?

(e) Now suppose that we are in steady state k(0) = k∗ when the savings rate suddenly increases
to s = 0.22. Calculate and plot the time paths of k(t), y(t), c(t) in response to this change.
Explain both the short-run and long-run dynamics of k(t), y(t), c(t). What if instead the
savings rate had increased to s = 0.30? Do you think these are large or small effects on
output? Explain.

Solutions:

(a) Steady state capital k∗ solves

sf(k∗) = (δ + g + n)k∗

This implicitly determines k∗ as a function of the savings rate s, say k∗ = k(s). Write this

sf(k(s)) = (δ + g + n)k(s)

Differentiating both sides with respect to s gives

f(k(s)) + sf ′(k(s))k′(s) = (δ + g + n)k′(s)
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Solving for k′(s) then gives

k′(s) = − f(k∗)

sf ′(k∗) − (δ + g + n)
> 0

which is positive since at steady state the slope of the savings curve sf(k) is flatter than
the depreciation line (δ + g + n)k, that is sf ′(k∗) < (δ + g + n). Now observe that steady
state output is given by y∗ = f(k∗) = f(k(s)) ≡ y(s) and steady state consumption is
given by c∗ = (1 − s)y∗ = (1 − s)y(s) ≡ c(s) with

y′(s) = f ′(k)k′(s) > 0

and
c′(s) = (1 − s)y′(s) − y(s)

Since a higher savings rate increases steady state capital, it also increases steady state
output. The effect on consumption is ambiguous and depends whether the savings rate s
is greater or lower than the ‘golden rule’ level (as discussed in class).

(b) With y = f(k) = kα we have the solutions

k∗ =

(
s

δ + g + n

) 1
1−α

and

y∗ =

(
s

δ + g + n

) α
1−α

Hence
d log k∗

d log s
=

1

1 − α
> 1

and
d log y∗

d log s
=

α

1 − α

Notice that an increase in the saving rate has a ‘multiplier-like’ 1
1−α effect on steady state

capital. A higher savings rate leads to more capital which leads to more output which
leads to more saving which leads to more capital, etc, cumulating in a total increase of
1 + α + α2 + · · · = 1

1−α .

(c) With y = f(k) = kα the capital stock k(t) solves the nonlinear differential equation

k̇(t) = sk(t)α − (δ + g + n)k(t)

But this implies a linear differential equation in the capital/output ratio x(t) ≡ k(t)/y(t) =
k(t)1−α. To see this, observe

ẋ(t) = (1 − α)k(t)−αk̇(t)

= (1 − α)k(t)−α
[
sk(t)α − (δ + g + n)k(t)

]

= (1 − α)
[
s− (δ + g + n)k(t)1−α

]

= (1 − α)
[
s− (δ + g + n)x(t)

]
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This is a stable linear differential equation in x(t) with steady state

x∗ =
k∗

y∗
=

s

δ + g + n

and unique solution

x(t) = eλtx(0) + (1 − eλt)x∗, λ ≡ −(1 − α)(δ + g + n) < 0

So the solution for k(t) is

k(t) =
(
eλtk(0)1−α + (1 − eλt)k∗ 1−α

) 1
1−α

(d) Figure 1 below shows the transitional dynamics of k(t), y(t), c(t) for the given parameter
values. Notice that k∗ = 2.6918, y∗ = 1.3459 (so the capital/output ratio is x∗ = s/(δ +
g + n) = 2) and c∗ = 1.0767 so that c∗/y∗ = 1 − s = 0.80.

The half-life of convergence is the time t∗ it takes to close half of the initial deviation from
steady state. Since the differential equation for the capital/output ratio is linear, we have
a simple formula for the half-life in the capital/output ratio. Using the solution

x(t) = eλtx(0) + (1 − eλt)x∗ = x∗ + eλt(x(0) − x∗)

we look for the value of t such that x(t) − x∗ = (x(0) − x∗)/2. This is given by

t∗ = − log 2

λ
=

2

(1 − α)(δ + g + n)
> 0

With the given parameters, this works out to be

t∗ =
0.69

(1 − 0.30)(0.05 + 0.02 + 0.03)
= 9.90

(measured in years, if the growth rates are annual growth rates).

Note: does this give the half-life for k(t) too? Or y(t)? Not in general, because of the

transformation k(t) = x(t)
1

1−α , the gap k(t) − k∗ is not half of k(0) − k∗ when x(t) − x∗

is half of x(0) − x∗. But near the steady state k∗ (i.e., for small deviations), the speed of
adjustment in k(t) is given by

t∗ = − log 2

sf ′(k∗) − (δ + g + n)
=

2

(1 − α)(δ + g + n)

just as for the capital/output ratio.

(e) With s = 0.22 the long-run values increase to k∗ = 3.0844, y∗ = 1.4020 and c∗ = 1.0936.
This is a 10% increase in the savings rate (from 0.2 to 0.22) leading to an approximately
1

1−α×10 = 14% increase in capital (from 2.6918 to 3.0844) and an approximately α
1−α×10 =

4% increase in output (from 1.3459 to 1.4020), as expected from the elasticities in part
(b). Similarly with s = 0.3 the long-run values increase to k∗ = 4.8040, y∗ = 1.6013
and c∗ = 1.0936. This is a 50% increase in the savings rate (from 0.2 to 0.3) leading
to an approximately 1

1−α × 50 = 71% increase in capital (from 2.6918 to 4.8040) and an
approximately α

1−α × 50 = 21% increase in output (from 1.3459 to 1.6013). I would say
these are relatively small effects on output, even a 50% increase in national savings is only
increasing long-run output by about 21%.

Figure 2 below compares the transitional dynamics of k(t), y(t), c(t) for s = 0.20, s = 0.22
and s = 0.30.
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2. Natural resource depletion in the Solow model. Consider a Solow model where output
is given by the CRS production function

Y (t) = K(t)αR(t)φ(A(t)L(t))1−α−φ, 0 < α, φ < 1

where R(t) denotes a stock of resources that depletes at rate θ > 0

Ṙ(t) = −θR(t)

The rest of the model is as standard with constant savings rate s, depreciation rate δ, produc-
tivity growth g and employment growth n.

(a) Let gY (t) and gK(t) denote the growth rates of output and the capital stock. Derive a
formula for gY (t) in terms of gK(t).

(b) Let g∗Y and g∗K denote the growth rates of output and the capital stock along a balanced
growth path. Show that along any balanced growth path g∗K = g∗Y . Solve for this growth
rate.

(c) Does the economy necessarily converge to a balanced growth path? Explain.

(d) Now suppose instead that resources R(t) grew in line with population, Ṙ(t) = nR(t).
Compare the long-run growth rate of the economy with resource depletion from part (b)
to the long growth rate of this alternative economy without resource depletion. What
would make this gap between the growth rates large? Explain.
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Solutions:

(a) Taking logs of the production function

log Y (t) = α logK(t) + φ logR(t) + (1 − α− φ)(logA(t) + logL(t))

Then differentiating with respect to t

Ẏ (t)

Y (t)
= α

K̇(t)

K(t)
+ φ

Ṙ(t)

R(t)
+ +(1 − α− φ)

(
Ȧ(t)

A(t)
+
L̇(t)

L(t)

)

Plugging in the given growth rates we then have

gY (t) = αgK(t) − φθ + (1 − α− φ)(g + n)

(b) Since the savings rate is constant we can write

K̇(t) = sY (t) − δK(t)

or

gK(t) =
K̇(t)

K(t)
= s

Y (t)

K(t)
− δ

Hence along any balanced growth path where capital grows at a constant rate g∗K we must
have

g∗K = s
Y (t)

K(t)
− δ

That is, along a balanced growth path the capital/output ratio x(t) ≡ K(t)/Y (t) ratio
must be constant, in other words output must be growing at the same rate as the capital
stock, g∗Y = g∗K . Let this common growth rate be g∗. From part (a) this g∗ satisfies

g∗ = αg∗ − φθ + (1 − α− φ)(g + n)

which solves for

g∗ =
1

1 − α
(−φθ + (1 − α− φ)(g + n))

Observe that for any t the capital/output ratio x(t) is strictly decreasing in the growth
rate of the capital stock

x(t) =
K(t)

Y (t)
=

s

gK(t) + δ

And along a balanced growth path

x∗ =
s

g∗ + δ

Importantly, we will have x(t) > x∗ if and only if gK(t) < g∗.

Note: In what follows we will presume that

−φθ + (1 − α− φ)(g + n) + (1 − α)δ > 0

so that g∗ + δ > 0 even if g∗ < 0.
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(c) From parts (a) and (b) we have

gY (t) = αgK(t) − φθ + (1 − α− φ)(g + n)

and
g∗ = αg∗ − φθ + (1 − α− φ)(g + n)

Taking the difference between these expressions

gY (t) − g∗ = α(gK(t) − g∗)

Using this we can write the growth rate in the capital/output ratio as

gK(t) − gY (t) = (gK(t) − g∗) − (gY (t) − g∗) = (1 − α)(gK(t) − g∗)

We will now use this calculation to argue that the balanced growth path is stable. To
see this, first suppose that gK(t) < g∗. Then gK(t) < gY (t) and since the capital/ output
ratio x(t) = K(t)/Y (t) is strictly decreasing in gK(t) we also know that x(t) > x∗ so the
capital/output ratio is falling towards the balanced growth path x∗ from above. Alterna-
tively, suppose that gK(t) > g∗. Then gK(t) > gY (t) and since the capital/output ratio
is strictly decreasing in gK(t) we also know that x(t) < x∗ so the capital/output ratio is
rising towards the balanced growth path x∗ from below. In this sense, the balanced growth
path is stable (i.e., the growth rate is ‘mean reverting’ towards g∗).

(d) Now let θ = −n. This makes the growth rate

ĝ∗ =
1

1 − α
(−φθ + (1 − α− φ)(g + n))

∣∣∣∣
θ=−n

=
1

1 − α
(φn+ (1 − α− φ)(g + n))

Compare this to the growth rate g∗ from part (b)

g∗ =
1

1 − α
(−φθ + (1 − α− φ)(g + n))

so that

g∗ − ĝ∗ = − φ

1 − α
(θ + n) < 0

That is, the growth rate in the economy with resource depletion is less than the growth
rate without resource depletion and the size of the gap between the growth rates is

φ

1 − α
(θ + n)

This gap is large when for example φ is large (resources are important in the production
function) or when θ is large (resources deplete at a faster rate).

3. Transitional dynamics in the Ramsey-Cass-Koopmans model. Suppose the planner
seeks to maximize the intertemporal utility function

∞∑
t=0

βt u
( Ct
L

)
L, 0 < β < 1
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subject to the sequence of resource constraints

Ct +Kt+1 = F (Kt, L) + (1 − δ)Kt, 0 < δ < 1

given initial K0 > 0. The production function has the Cobb-Douglas form

Y = F (K,L) = AKαL1−α, 0 < α < 1

Suppose that productivity A > 0 and the labor force L > 0 are constant. Let ct = Ct/L,
kt = Kt/L, yt = Yt/L etc denote consumption, capital, output etc in per worker units. Suppose
that the period utility function is strictly increasing and strictly concave.

(a) Derive optimality conditions that characterize the solution to the planner’s problem. Give
intuition for those optimality conditions. Explain how these optimality conditions pin
down the dynamics of ct and kt.

(b) Solve for the steady state values c∗, k∗, y∗ in terms of the parameters. How do these steady
state values depend on the level of A?

(c) Suppose the economy is initially in the steady state you found in (b). Then suddenly
there is a permanent increase in productivity from A to A′ > A. Use a phase diagram to
explain both the short-run and long-run dynamics of ct and kt in response to this increase
in productivity. Does ct increase or decrease? Explain.

Now consider the specific utility function u(c) = log(c).

(b) Log-linearize the planner’s optimality conditions around the steady-state. Guess that in log-
deviations capital satisfies

k̂t+1 = ψkkk̂t

and that consumption satisfies
ĉt = ψckk̂t

Use the method of undetermined coefficients to determine ψkk and ψck in terms of model pa-
rameters. How if at all do these depend on the level of A?

Now consider the specific numerical values α = 0.3, β = 1/1.05, δ = 0.05 and A = 1.

(c) Calculate the values of ψkk and ψck. Suppose the economy is at steady state when suddenly at
t = 0 there is a 5% permanent increase in the level of productivity from A = 1 to A′ = 1.05.
Calculate the transitional dynamics of the economy as it adjusts to its new long run values.
In particular, calculate and plot the time-paths of capital, output, and consumption until they
have converged to their new steady state levels.

(e) How if at all would your answers to parts (b) through (d) change if σ was lower, say σ = 0.5?
Or higher, say σ = 2? Give intuition for your answers.
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Solutions:

(a) The planner’s problem is to maximize intertemporal utility (per worker)

∞∑
t=0

βt u(ct)

subject to the sequence of resource constraints

ct + kt+1 = Akαt + (1 − δ)kt

Setting up the Lagrangian

L =
∞∑
t=0

βtu(ct) +
∞∑
t=0

λt[Ak
α
t + (1 − δ)kt − ct − kt+1]

The key first order conditions for this problem are, for consumption,

ct : βtu′(ct) = λt

and for capital,
kt+1 : λt = λt+1

[
αAkα−1t+1 + 1 − δ

]
and for the multipliers,

λt : ct + kt+1 = Akαt + (1 − δ)kt

We also have the transversality condition

lim
T→∞

βTu′(cT )kT+1 = 0

Eliminating the multipliers λt gives the consumption Euler equation

u′(ct) = βu′(ct+1)[αAk
α−1
t+1 + 1 − δ]

The consumption Euler equation and the resource constraint are two nonlinear difference equa-
tions in ct, kt. To pin down the dynamics of ct, kt we also need two boundary conditions. One
of these is the given initial condition k0 > 0. The other is the transversality condition given
above.

(b) In a steady state with ct = ct+1 = c∗ the consumption Euler equation implies

1 = β[αAk∗α−1 + 1 − δ]

which can be solved to get steady state capital per worker

k∗ =

(
α

ρ+ δ

) 1
1−α

A
1

1−α , ρ ≡ 1

β
− 1 > 0

Steady state output per worker is then found from the production function

y∗ = Ak∗α = A

(
α

ρ+ δ

) α
1−α

A
α

1−α =

(
α

ρ+ δ

) α
1−α

A
1

1−α
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so that the capital/output ratio is
k∗

y∗
=

α

ρ+ δ

and hence the consumption/output ratio is

c∗

y∗
= 1 − δ

k∗

y∗
= 1 − δ

α

ρ+ δ
=
ρ+ (1 − α)δ

ρ+ δ

Steady state output per worker is therefore

c∗ =

(
ρ+ (1 − α)δ

ρ+ δ

)(
α

ρ+ δ

) α
1−α

A
1

1−α

Notice that the long run levels c∗, k∗, y∗ are all proportional to the level of productivity via
A

1
1−α but the long run ratios c∗/y∗, k∗/y∗ are independent of productivity.

(c) Using the expressions in part (b) above, it is clear that an increase in the level of productivity
from A to A′ > A increases steady state consumption from c∗ to c∗′, say, increases steady state
capital from k∗ to k∗′, say, and increases steady state output from y∗ to y∗′. To see this in a
phase diagram, first note that an increase in A shifts the ∆c = 0 locus to the right and shifts up
the ∆k = 0 locus (i.e., the curve C(k) = Akα−δk shifts up). Thus in the long run consumption,
output and capital per worker all increase.

Relative to these new steady state levels the economy ‘begins’ with initial capital per worker
k0 = k∗ < k∗′. On ‘impact’ the level of consumption immediately jumps up to c(0) > c∗ on the
new stable arm going through the new steady state. As discussed below, this new stable arm
is approximately parallel to the old stable arm (going through the old steady state). The level
of output also jumps up on impact because of the change in productivity. Capital does not
jump on impact because it is predetermined. On impact, consumption jumps by less than the
jump in output with the difference being saved. This increase in savings/investment is what
allows the economy to build up a new higher level of capital in the long run. As the economy
transitions to its new long run, consumption and output continue to rise with the new higher
levels of capital.

(d) Proceeding as in Lecture 5 slides 8–11 we have the log-linearized resource constraint

c∗ĉt + k∗k̂t+1 =
1

β
k∗k̂t

and the log-linearized consumption Euler equation

ĉt+1 = ĉt + β
f ′′(k∗)k∗

σ
k̂t+1

Plugging in our guesses and rearranging terms in this version of the resource constraint[
c∗ψck + k∗ψkk −

1

β
k∗
]
k̂t = 0

This has to hold for any k̂t hence we must have

c∗ψck + k∗ψkk −
1

β
k∗ = 0
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or

ψck =

(
1

β
− ψkk

)
k∗

c∗

Likewise plugging in our guesses and rearranging terms in the consumption Euler equation[
ψckψkk − ψck − β

f ′′(k∗)k∗

σ
ψkk

]
k̂t = 0

This has to hold for any k̂t hence we must also have

ψckψkk − ψck − β
f ′′(k∗)k∗

σ
ψkk = 0

Combining the two expressions in boxes gives a familiar looking quadratic in ψkk

ψ2
kk −

(
1 +

1

β
− β

f ′′(k∗)c∗

σ

)
ψkk +

1

β
= 0

The roots of this quadratic are the eigenvalues of this dynamic system. There is one stable and
one unstable root. Let ψkk denote the stable root. We can then recover ψck from the first boxed
equation. To see how ψkk and ψck depend on productivity A, let’s use the given functional
forms. We have u(c) = log c so σ = 1. And we have f(k) = Akα so f ′′(k) = α(α − 1)Akα−2 so
that f ′′(k)k = α(α− 1)Akα−1 = (α− 1)f ′(k). So we can write the quadratic

ψ2
kk −

(
1 +

1

β
− β(α− 1)f ′(k∗)

c∗

k∗

)
ψkk +

1

β
= 0

Moreover from part (b) we know that in steady state

f ′(k∗) = ρ+ δ

and
c∗

k∗
=
c∗/y∗

k∗/y∗
=
ρ+ (1 − α)δ

α

Hence the quadratic does not depend on the level of productivity A and so A will not affect the
eigenvalues of this system. Let ψkk denote the stable eigenvalue of this system. The stable arm
of the system is then given by

ĉt = ψckk̂t

with slope

ψck =

(
1

β
− ψkk

)
k∗

c∗

Since the stable eigenvalue ψkk is independent of productivity A and the consumption/capital
ratio c∗/k∗ is independent of A so too is the slope of the stable arm ψck independent of A.

But note the level of the stable arm depend on the steady state value. That is, writing things
in log-levels as opposed to log-deviations

log ct = log c∗ + ψck(log kt − log k∗)

While the slope ψck is independent of A, the level of the stable arm does depend on A via the
steady state terms. After all, as we saw in part (b) above, an increase in A increases both c∗

and k∗. In this sense, the new stable arm going through the new steady state with productivity
level A′ > A approximately parallel to the old stable arm. Because of this, when the shock
from A to A′ hits the economy, consumption jumps up on impact.
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(e) With these parameter values we get k∗ = 4.8040, y∗ = 1.6013 and c∗ = 1.3611 and the roots of
the quadratic are 0.8928 and 1.1761 so we set ψkk = 0.8928. The slope of the stable arm is then

ψck =

(
1

β
− ψkk

)
k∗

c∗
= (1.05 − .8928)

4.8040

1.3611
= 0.5550

With the shift to A′ = 1.05 the new steady state values are k∗ ′ = 5.1508, y∗ ′ = 1.7169 and
c∗ ′ = 1.4594. Relative to these new steady state values our initial condition is the old steady
state k0 = k∗ = 4.8040 so our initial log deviation is log(4.8040/5.1508) = −0.0697, i.e., we
begin about 7% below the new steady state. Figure 3 below shows the transitional dynamics
to this new steady state. But note that this means consumption immediately jumps above the
old steady state level, an initial log deviation of ĉ0 = −0.0387, about 4% below the new steady
state consumption, is equivalent to a consumption level of c0 = exp(ĉ0)c

∗ ′ = 1.4040 which is
a jump up from the old steady state of c∗ = 1.3611, indeed it is a jump up of about 3% in
consumption in response to the 5% increase in productivity.

(f) If σ = 0.5, consumption is more substitutable over time — i.e., the intertemporal elasticity of
substitution is relatively high, 1/σ = 2. In this case, the consumption smoothing motive is weak
and the planner instead transitions the economy to its new steady state (which is the same as
in part (e), since these values don’t depend on σ) more quickly. To be specific, we now get
ψkk = 0.84 and the convergence to the new steady state is faster, as shown in Figure 4.

On the other hand, if σ = 2, consumption is more complementary over time — i.e., the in-
tertemporal elasticity of substitution is relatively low, 1/σ = 0.5. In this case, the consumption
smoothing motive is strong and the planner smooths consumption over a longer period than in
parts (c) and (d). To be specific, we now get ψkk = 0.93 and the convergence to the new steady
state is slower, as shown in Figure 5.

To summarize, while σ is irrelevant for the steady state values, the magnitude of σ plays an
important role in determining the transitional dynamics of the economy around steady state.
Even though the σ = 0.5 and σ = 2 cases have the same steady state, the former will generally
be closer to steady state since its transitions are relatively quick while the latter can exhibit
long, persistent deviations from steady state since its transitions are relatively slow.



Advanced Macroeconomics: Problem Set #1 12

Figure 1: Savings rate s = 0.20
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Figure 2: Savings rates compared
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Figure 3: σ = 1 giving ψkk = 0.89, ψck = 0.56



Advanced Macroeconomics: Problem Set #1 15

Figure 4: σ = 0.5 giving ψkk = 0.84, ψck = 0.72
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Figure 5: σ = 2 giving ψkk = 0.93, ψck = 0.43


