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This class

e Stochastic growth model

— exogenous shocks to productivity
— outcomes are stochastic processes for consumption, capital etc

— starting point for RBC-style models



Stochastic difference equations

e Consider scalar stochastic difference equation
Tir1 = (1 — Q)T + dxy + €441, To glven

A simple stochastic process. Also known as as a first-order
autoregression or AR(1)

e Innovations £; drawn from given distribution, for example

e, ~ 1ID N(0,02)



Stochastic difference equations

e [terating forward from z( gives
t—1
n=2+¢' (10— 2)+ Y et
1=0

e The expected value of the moving average is

t—1
E {Z ¢i8t_@'} =0

1=0

while the variance is
t—1 t—1
Var E Pler_ip = 0> E P
t—1 _ g
i=0 i=0

(since the innovations are independent)
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Limiting distribution

Thus distribution at date t is

a:tNN<x+qb Ty — T) 2Zgb22>

If |¢| < 1, converges to well-behaved limiting distribution as ¢t — oo

o
(2125

(also known as the ‘long-run’ or ‘stationary’ distribution)

Long-run variance depends on both innovation variance o2 and
persistence ¢. A persistent process has higher long-run variance

If |¢| > 1, process is not stationary and does not converge to a
limiting distribution



Simulating a simple AR(1) process

From Matlab script “simulate ARI example.m” in LMS

$%%%% parameters
S = 250; %% length of simulation
phi = 0.5; %% AR (1) coefficient

% 1lnnovation standard deviation
x0 = 0; %% initial condition
$%%%% draw S realizations from N(0,sigeps”™2)

epsilons = sigeps*randn(S,1);




$%%%% lteratively construct sample path

xt = zeros(S5,1);

for s=2:85,

xt (1) = x0;

xt (s) = phixxt(s—1)+epsilons(s);
end




time = (1:1:38)"';

figure (1)

plot (time, xt, 'b-"',time, zeros (S, 1), "k——")

xlabel ('time")

yvlabel ('x(t) ")

axis([min(time) max(time) 1.2xmin(xt) 1.2+max(xt)])
legend ('sample path of AR(1l) process')
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Stochastic growth model

e Social planner maximizes expected intertemportal utility

EO{ZBtu(Ct)}, 0<pB <1
t=0

subject to sequence of resource constraints, for each date and state

Ct + kt_|_1 = th(k't) + (1 — (S)kt, 0<o<1

e Initial ky > 0 and stochastic process for productivity {z;} given

e All variables in per worker units. Simplified problem, abstracting
from trend productivity growth and trend employment growth
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Social planner’s problem

e Lagrangian with stochastic multiplier A; > 0 for each constraint

=3I {Zﬁtu(&s Z )\t th (k) + (1 = 0)kt — ¢t — kt+1} }
t=0

e Some key first order conditions

Ct . Btu’(ct) — )\t =0
Fiy1 At + B { M |21 f (kepr) +1=6] } =0
)\t . th(k't) -+ (1 — 5)]615 — Ct — kt_|_1 =0

These hold at every date and state

e Although ks has a t + 1 subscript, it is chosen conditional on
date ¢t information
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Dynamical system

e Gives a system of stochastic difference equations

u'(cr) = BE {u (1) 21 f (Reg1) +1 = 0] }

and
Ct —+ k‘t_|_1 = th(kt) -+ (1 — 5)/€t

given initial kg and transversality condition

e Maps exogenous stochastic process {z;} into endogenous stochastic
processes {ct, ki } ete

e In this sense, solution is a probability distribution for {c, k;} etc
conditional on parameters of the model — i.e., a likelihood function
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“Non-stochastic steady state”

Shut down shocks, set z; = Z
Find steady state of associated deterministic model

Steady state capital k solves
1 :ﬁ[zf’(/%) +1 —5}

Steady state consumption ¢ pinned down by resource constraint

c=ZzZf(k)— ok
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Log-linearization

e Resource constraint
ct + ki1 = ze f (k) + (1 —0)ky
e Log-linear approximation
Gl + kkyy1 ~ Zf (k)2 + [2f (k) +1 — 6| kky
or

cCt + kkt—l—l ~ Yzt + Ekkt
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Log-linearization

e Consumption Euler equation

w(¢r) = PE {u/ (cp1)Riv1},  Rigr = zgr f' (k1) +1 -0
e Log-linear approximation
" (€)eey ~ mazt{ (&) +u’(5)}_2}?t+1}
so that on using SR = 1 and defining o(c) = —u"(c)c/u’(c) we have

R 1 ~
1M {A0t+1} ~ ﬁEt {Rt+1}

where similarly

—_ A

Rip1 ~ Bl (k)z21 + z2f" (k) kkit]
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Standard parameterization

e CRRA utility function

u(c) = : o> 0

e AR(1) process for log productivity, normalizing z = 1
Ze41 = Q¢ + €441, D<o <1
with IID normal innovations

Et41 N(O7U§)
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Standard parameterization

e Treating approximations as exact, with this parameterization the
system of log-linear equations can be written

cCt + kkt_|_1 — Yzt -+ Ek‘kt

and

1

Ei {AC1} = ;Et {5"7[27%1 + (a — 1)/%t+1]}

where © denotes the steady state marginal product of capital

F=flk)=ak®t=p+6
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Method of undetermined coefficients

Guess solutions linear in state variables k; and Z;

For the endogenous state variable, capital

]Aft+1 = Yk + Vrs 2y

For the control variable, consumption

ét — wck kt + wczét

In short, we need to determine four coefficients

Uik, Yeks Vkzy Vez
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Method of undetermined coefficients

e Note that

Ct4+1 = Yekkir1 + VezZis1

— wck (wkk]%t + wkzét) + wczét—l—l

® So expected consumption is

Et{ét—l—l} — wckwkkkt + (wckwkz + ¢cz¢)7zt

(i.e., conditional expectations also linear in state variables)

19



Tedious algebra

e Resource constraint

. ) 1_.
Eét -+ kkt—l—l — gjzt + Bkkt

e Plug in guesses and collect terms

OZ[@%k+%¢Mr—%ZVE+[@%z+%¢m—@4%

e This has to hold for any values of lAct, Zi. Gives two conditions

5¢dr+E¢%k—-%E==0 (1)
and
chz + ]ﬂpkz — y =0 (2)
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Even more

tedious algebra

Consumption Euler equation as

1

By {Act1} = B { (21 + (@ = Dher) }

Again, plug in guesses and collect terms

br

0= :%k%k — Yok —

0

Gives two more conditions

+ :wckwkz + wcqu — 2bcz —

(0= 1)
Brf(ﬁb + (o — 1)%,2)] Zt

o

B8r

Vet Wik — Yok — 7(04 — D), =0

and

wckwkz + wcqu — 77bcz —

87

o

Four equations to solve for the four coeflicients
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Recursive structure

e (Coefficients on response to capital i, . can be solved first

Yk = (% — %k)%

or

Ve Wik — Yok — ;(04 — D)t = 0

e Plug (1) into (3) to get quadratic equation in g
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Familiar quadratic

e Familiar quadratic equation in g

%%k B (1 B Br(a—1))

O

+;>¢kk+;:0

=l o)

e Same characteristic polynomial we had for the deterministic version

e Two roots, both positive, one stable and one unstable

e Let ¢, denote the stable root
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Now recover other coeflicients

e Plugging ¥ back into (1)

. %k)%

B

e Using solution for ., now solve (2) and (4) simultaneously for
Vi, Yer. These equations are linear in g, , Y., given .

%bck:(

e Yet more tedious algebra gives

- To+(1—9)"
wkz B?; ]2
—“(1—a)+ Yk +(1—9)37
and finally
y k
wcz — g — ’Qbkzi
C C
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Example

From Matlab script “stochastic growth example.m” in LMS

Set parameters c =1 and a =0.3, 8 = ¢ = 0.95 and 0 = 0.05

(Gives coeflicients

() = (e e

Plots impulse response functions and a simulation
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Impulse response functions

T T T
0.012 + productivity |
consumption
output
— — capital

0.01 + —
2
S
w

-, 0.008 - —
o
%]
[
»
5

&= 0.006 - _
<
0
©
>
[
©

o> 0.004 —
o

0.002 +— _

0
150

periods after shock

Innovation g = 0.01 (i.e., +1% productivity shock). Capital l%t“ = wkki@t + Yr2Zt,
consumption ¢; = Y.kt + Ycz2: and output gy = 2 + ak: given z; = qbtso.
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Simulation
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Capital ]%H-l = 'Qbk;k]%t -+ '(pkz»??t, consumption ét = wckl%t -+ @Dczét, output th = ét —+ Oé]%t
given simulated path for productivity Zz:.
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Next class

e Endogenous labor supply

— proper RBC model with employment fluctuations

— numerical examples, building intuition
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