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This class

e Ramsey-Cass-Koopmans growth model in continuous time

— briet introduction to optimal control theory

— decentralization of planning problem



A standard optimal control problem

Consider the problem of maximizing

/0 T e hu(t), 2(D) dt. p >0

with ‘state variable’ x(t), ‘control variable’ u(t), and subject to the
law of motion for the state

#(t) = g(u(t), (t)),  (0) = wo given

and feasible controls u(t) € U

Characterize solution of this problem using Hamiltonian



Hamiltonian

e Hamiltonian for this problem (in current-value representation)
H(u,z,A) = h(u,z) + Ag(u, o)

e Key optimality conditions, for all £ > 0,

Along with initial condition z(0) = zg and transversality condition

lim e PP \(T)z(T) =0

T'— o0



Ramsey-Cass-Koopmans

State variable capital k, control variable consumption c

Planner’s problem is to maximize

/ e Pt u(c(t)) dt, p>0
0
subject to resource constraint
k(t) = f(k(t)) = 0k(t) —c(t),  k(0) = ko given
and feasible consumption ¢(t) > 0

Hamiltonian for this problem
H(Ca k, )‘) = U(C) + )‘(f(k) — 0k — C)

Note simplified setup: constant employment and productivity
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H(c, k, ) =ulc) + A(f(k) — 0k — ¢)

e Key optimality conditions, for all £ > 0,
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Hi(c(t), k(t), A(t)) = pA(t) — A(t)
k(1)

along with initial condition and transversality condition
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e (Calculating the derivatives of the Hamiltonian
Hele, k,N) =u'(c) — A

Hk(C, k, >‘) — )‘(f/(k) — 5)
Ho(e, ko A) = f(k) — 0k —



Ramsey-Cass-Koopmans

e Hence system of optimality conditions can be written

T >~
/N /N

e So the first two conditions can be combined to eliminate A(%),
giving the continuous time consumption Euler equation

o) _ SR —d=p o)
® " o) GG

o

where o(c) is the Arrow/Pratt coefficient of relative risk aversion
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Ramsey-Cass-Koopmans

e System of differential equations in c(t), k()

o) _ S h(t) 5~ p
ot) " ole)
(t) = F(k()) — k(1) — c(t)

given initial condition k(0) = kg and transversality condition

lim e "1/ (¢(T))k(T) =0

T— o0

e One given initial condition k(0), initial consumption ¢(0) can jump

e Unique solution if dynamical system has one stable and one
unstable root



Continuous vs. discrete time

e Suppose isoelastic utility

u(c) = P o> 0

e Continuous time consumption Euler equation

ct) _ k() —d—p
c(t) o

e Discrete time consumption Euler equation

= = (Bl (ko) +1 - 0]) 7

Ct

so that on taking logs and using log(1 + =) ~ x we have

f'(kty1) =6 —p

o

Alogcii1 =~



Steady state

o Steady state c¢*, k* where ¢(t) = 0 and k(t) = 0, implied by
fi(k*)=p+3
and
c" = f(k*) — 0k"

e As usual ¢*, k* independent of u(c) function
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Qualitative dynamics

From consumption Euler equation
c(t)y>0 & [flk@t)>p+0 < k(t)<k'

Let C(k) denote consumption sustained by holding k(t) fixed at k
C(k)= f(k) — ok

Then from resource constraint
E(t) >0 < f(k(t)=06k(t) >ct) < C(kt) > c(t)

Analyze these qualitative dynamics in a phase diagram
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consumption per worker, c

¢(t) =0
stable arm
sustained consumption
= C(k) = f(k) — 0k
c(0) -/~ 5
|
o l
0 k(0) ke

Phase diagram in k(t), c(t) space

capital per worker, k

12



Linear differential equations

e (Consider scalar linear differential equation
t(t) = ax(t) + b, z(0) = x( given
e Steady state, if a £ 0
T=—a b
e Solution, if a £ 0
r(t) = 7 + e (x(0) — T), t >0

If a < 0 then x(t) converges (monotonically) to x* as t — oo. If
a > 0 then x(t) diverges to 0o depending on sign of x(0) —
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System of linear differential equations

e Now let’s consider a system of linear differential equations

()= (2 22) () (8
T2(1) agr a2 r2(1) bo
or in matrix notation
x(t) = Ax(t) +b
e Analogous steady state
r=—-A"'b

so that
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System of linear differential equations

e Suppose A can be diagonalized
VIAV = A

e Then make change of variables z(t) = V" !(x(t) — ) and study
the uncoupled system

z(t) = Az(t)
e Solving the uncoupled system
z(t) = eMz(0)

where the matrix exponential e is simply a diagonal matrix with
entries of the form e*. In original coordinates

z(t)=x+ Vz(t) =z + Verz(0)
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System of linear differential equations

e That is, linear combinations of the form

ZCl(t) =1 + ?)116)\1t21 (0) + 11126>\2t22(0)

To(t) = Ty + v21€ 121 (0) + v22€™2125(0)
e Stable roots A < 0, unstable roots A > 0. Note initial conditions

B ?)22($1(O) — fl) — Ulg(ilj'g(()) — .Cfg)
V11U22 — V12021

B '011(51;2(0) — 2_72) — ?)21(5131(0) — 51_31)

V11022 — U12V21

e An unstable A dominates unless initial conditions ‘just right’
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Saddle path dynamics

e Suppose saddle path dynamics with
A1 <0< A\

e Then system explodes unless

2(0)=0 o 29(0) =Ty + Z—i(‘”(o) ~F)

[f system starts on this line (‘stable arm’,‘stable manifold’) then
converges to steady state. Diverges for any other initial conditions
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Ramsey-Cass-Koopmans

e Nonlinear system of the form

(i )= (o)

where, for the usual isoelastic case

_ f’(k)—p—c?c

gi(c, k) = - . gale, k)= f(k) — 6k —c

e Approximate dynamics
( c(t) ) _ ( Sg1(c, k) %91(07 k) ) ( c(t) —c >
k(t) %gg(c, k) =rg2(c k) k(t) —k
where the Jacobian matrix is evaluated at steady state ¢, k

e Local stability depends on signs of eigenvalues of this Jacobian

18



Ramsey-Cass-Koopmans

e Elements of the Jacobian matrix, evaluated at steady state

/ — — _
%gl(c,k):f(k) P=O0 ) athk=F

o

2 ey = ®

c <0

0,
_ — —]_
8692 (C7 k)

0 L B 5
ap2lek)=f(k)—o=p atk=k

19



Ramsey-Cass-Koopmans

e Let A denote this Jacobian matrix

A:( 0 f”o(k)C>
1 P

e Ligenvalues characterized by determinant

1" (k)

o

det(A) = My = c <0

and trace
tr(A) =X\ +X=p>0
e Hence roots real and of either sign, say
A <0< A

and hence, as anticipated, exhibits saddle path dynamics
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Compute the eigenvalues

e Characteristic polynomial
p(A) = A% —tr(A) + det(A)

e Solve the quadratic

(1.
k
pgy_v—pA+f()5:0
o
gives roots
p— \/p2_4f"g€)c o+ \/p2_4f”((f)c
AN = 5 <0< 5 = Ao
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Method of undetermined coefficients

e Write out approximate dynamics

ott) = T ey —

k(t) = —(c(t) — &) + p(k(t) — k)

e Write this as a second-order differential equation in k(t), namely

k1) = pk(t) ~ T k() —

e Now guess linear law of motion

k() = A(k(t) — k)

which implies that also

k() = Me(t) = N2 (k(t) — k)
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Method of undetermined coefficients

Plug in guesses and collect terms

/ "f>5 (k(t) — k) = 0

[)\2—,0)\+

Has to hold for any value of (k(t) — k), gives us again

F'®e _

0

A — A+ 0

which implies the roots given on slide 21 above

Also implies slope of the stable arm

c(t) —c=(p— A)(k(t) — k)

where A < 0 denotes the stable root. Hence stable arm steeper
than k(t) = 0 locus
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Decentralized problem: households

Endowed with initial capital stock k£(0) > 0, depreciation rate &
Endowed with one unit of labor, [ =1
Supply k(t) and [ = 1 to competitive firms for R(t) and w(t)

Net assets a(t) return r(t)
a(t) =r(t)a(t) +w(t) — c(t)

Physical capital and other assets perfect substitutes (no risk), so
no arbitrage implies
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Decentralized problem: households

e Household problem is to choose ¢(t) > 0 to maximize

U= / e Pru(c(t)) dt
0
subject to the flow budget constraint
a(t) =r(t)a(t) + w(t) — c(t)

e A ‘no-Ponzi-game’ constraint rules out large negative a(t)

lim q(T)a(T) >0,  q(t) = exp (- /0 r(s) ds)

T—00

where ¢(t) is the intertemporal price of consumption
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H(c,a,\) = u(c) + Mra

e Key optimality conditions, for all £ > 0,

w — ¢)

along with initial condition and no-Ponzi condition etc

e (Calculating the derivatives of the Hamiltonian

HC(C, a, )‘) — u'(c) — A
Holc,a, N) = Ar
Halc,a,\) =ra+w —c
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Decentralized problem: households

e Hence system of optimality conditions can be written

Hence consumption is growing if r(¢) > p with interest sensitivity %
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Decentralized problem: firms

e Hire capital K and labor L to maximize profits
F(K,L)— RK —wL

e First order conditions
Fx(K,L)=R

FL(K,L) — W

e In per worker terms and using no arbitrage condition R =r + 9
fl(ky=r+46

f(k) = f'(k)k =w
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Decentralized problem: equilibrium

e Equilibrium: (i) households maximize utility taking prices as
given, (ii) firms maximize profits taking prices as given, and (iii)
markets clear

L =1, and k=a

e Implies system of differential equations

o) ) —p _ f0) —6—p

c(t) o o

k(t) = a(t)
=r(t)a(t) +w(t) — c(t)
= [f'(k(t)) — dlk(t) + [f(k(2)) — f'(k@)k(t)] — c(t)
= f(k(t)) = 0k(t) — c(t)
e (Coincides with planning problem
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Alternative approach to household problem

Integrate up the flow budget constraints to get consolidated
intertemporal budget constraint

/ " a(De(t) dt = a(0) + / T a(Dw(t) dt
0 0

in terms of the intertemporal prices ¢(t)

Then form the Lagrangian

L= / ePty dt+>\< (0) + /O T a®w(t) — ()] dt)

with single (constant) multiplier A
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Alternative approach to household problem

First order condition for ¢(t) is then just

™"/ (e(t) = (1)
Differentiating with respect to t gives

—pe” " (c(t)) + e u" (e(t))e(t) = Ad(t)
Then note

G(t) = —r(t)q(t)

If u(c) is isoelastic, again have simple consumption Euler equation
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Next class

e Some further topics in growth theory

— technological change
— capital-labor substitution vs. automation

— imperfect competition
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