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This class

• Ramsey-Cass-Koopmans growth model in continuous time

– brief introduction to optimal control theory

– decentralization of planning problem

2



A standard optimal control problem

• Consider the problem of maximizing
Z 1

0
e�⇢t h(u(t), x(t)) dt, ⇢ > 0

with ‘state variable ’ x(t), ‘control variable ’ u(t), and subject to the
law of motion for the state

ẋ(t) = g(u(t), x(t)), x(0) = x0 given

and feasible controls u(t) 2 U

• Characterize solution of this problem using Hamiltonian
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Hamiltonian

• Hamiltonian for this problem (in current-value representation)

H(u, x,�) ⌘ h(u, x) + �g(u, x)

• Key optimality conditions, for all t � 0,

Hu(u(t), x(t),�(t)) = 0

Hx(u(t), x(t),�(t)) = ⇢�(t)� �̇(t)

H�(u(t), x(t),�(t)) = ẋ(t)

Along with initial condition x(0) = x0 and transversality condition

lim
T!1

e�⇢T�(T )x(T ) = 0
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Ramsey-Cass-Koopmans

• State variable capital k, control variable consumption c

• Planner’s problem is to maximize
Z 1

0
e�⇢t u(c(t)) dt, ⇢ > 0

subject to resource constraint

k̇(t) = f(k(t))� �k(t)� c(t), k(0) = k0 given

and feasible consumption c(t) � 0

• Hamiltonian for this problem

H(c, k,�) ⌘ u(c) + �(f(k)� �k � c)

• Note simplified setup: constant employment and productivity
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H(c, k,�) ⌘ u(c) + �(f(k)� �k � c)

• Key optimality conditions, for all t � 0,

Hc(c(t), k(t),�(t)) = 0

Hk(c(t), k(t),�(t)) = ⇢�(t)� �̇(t)

H�(c(t), k(t),�(t)) = k̇(t)

along with initial condition and transversality condition

• Calculating the derivatives of the Hamiltonian

Hc(c, k,�) = u0(c)� �

Hk(c, k,�) = �(f 0(k)� �)

H�(c, k,�) = f(k)� �k � c
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Ramsey-Cass-Koopmans

• Hence system of optimality conditions can be written

u0(c(t)) = �(t)

�̇(t) = (⇢� (f 0(k(t))� �))�(t)

k̇(t) = f(k(t))� �k(t)� c(t)

• Differentiating the first condition with respect to t gives

u00(c(t))ċ(t) = �̇(t)

• So the first two conditions can be combined to eliminate �(t),
giving the continuous time consumption Euler equation

ċ(t)

c(t)
=

f 0(k(t))� � � ⇢

�(c(t))
, �(c) ⌘ �

u00(c)c

u0(c)

where �(c) is the Arrow/Pratt coefficient of relative risk aversion
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Ramsey-Cass-Koopmans

• System of differential equations in c(t), k(t)

ċ(t)

c(t)
=

f 0(k(t))� � � ⇢

�(c(t))

k̇(t) = f(k(t))� �k(t)� c(t)

given initial condition k(0) = k0 and transversality condition

lim
T!1

e�⇢Tu0(c(T ))k(T ) = 0

• One given initial condition k(0), initial consumption c(0) can jump

• Unique solution if dynamical system has one stable and one
unstable root
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Continuous vs. discrete time

• Suppose isoelastic utility

u(c) =
c1��

� 1

1� �
, � > 0

• Continuous time consumption Euler equation

ċ(t)

c(t)
=

f 0(k(t))� � � ⇢

�

• Discrete time consumption Euler equation
ct+1

ct
=
�
�[f 0(kt+1) + 1� �]

�1/�

so that on taking logs and using log(1 + x) ⇡ x we have

� log ct+1 ⇡
f 0(kt+1)� � � ⇢

�

9



Steady state

• Steady state c⇤, k⇤ where ċ(t) = 0 and k̇(t) = 0, implied by

f 0(k⇤) = ⇢+ �

and

c⇤ = f(k⇤)� �k⇤

• As usual c⇤, k⇤ independent of u(c) function
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Qualitative dynamics

• From consumption Euler equation

ċ(t) > 0 , f 0(k(t)) > ⇢+ � , k(t) < k⇤

• Let C(k) denote consumption sustained by holding k(t) fixed at k

C(k) ⌘ f(k)� �k

• Then from resource constraint

k̇(t) > 0 , f(k(t))� �k(t) > c(t) , C(k(t)) > c(t)

• Analyze these qualitative dynamics in a phase diagram
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Phase diagram in k(t), c(t) space
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Linear differential equations

• Consider scalar linear differential equation

ẋ(t) = ax(t) + b, x(0) = x0 given

• Steady state, if a 6= 0

x̄ = �a�1b

• Solution, if a 6= 0

x(t) = x̄+ eat(x(0)� x̄), t � 0

If a < 0 then x(t) converges (monotonically) to x⇤ as t ! 1. If
a > 0 then x(t) diverges to ±1 depending on sign of x(0)� x̄
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System of linear differential equations

• Now let’s consider a system of linear differential equations
✓

ẋ1(t)
ẋ2(t)

◆
=

✓
a11 a12
a21 a22

◆✓
x1(t)
x2(t)

◆
+

✓
b1
b2

◆

or in matrix notation

ẋ(t) = Ax(t) + b

• Analogous steady state

x̄ = �A�1b

so that

ẋ(t) = A(x(t)� x̄)
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System of linear differential equations

• Suppose A can be diagonalized

V �1AV = ⇤

• Then make change of variables z(t) = V �1(x(t)� x̄) and study
the uncoupled system

ż(t) = ⇤z(t)

• Solving the uncoupled system

z(t) = e⇤tz(0)

where the matrix exponential e⇤t is simply a diagonal matrix with
entries of the form e�t. In original coordinates

x(t) = x̄+ V z(t) = x̄+ V e⇤tz(0)
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System of linear differential equations

• That is, linear combinations of the form

x1(t) = x̄1 + v11e
�1tz1(0) + v12e

�2tz2(0)

x2(t) = x̄2 + v21e
�1tz1(0) + v22e

�2tz2(0)

• Stable roots � < 0, unstable roots � > 0. Note initial conditions

z1(0) =
v22(x1(0)� x̄1)� v12(x2(0)� x̄2)

v11v22 � v12v21

z2(0) =
v11(x2(0)� x̄2)� v21(x1(0)� x̄1)

v11v22 � v12v21

• An unstable � dominates unless initial conditions ‘just right’
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Saddle path dynamics

• Suppose saddle path dynamics with

�1 < 0 < �2

• Then system explodes unless

z2(0) = 0 , x2(0) = x̄2 +
v21
v11

(x1(0)� x̄1)

If system starts on this line (‘stable arm ’,‘stable manifold ’) then
converges to steady state. Diverges for any other initial conditions
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Ramsey-Cass-Koopmans

• Nonlinear system of the form
✓

ċ(t)
k̇(t)

◆
=

✓
g1(c(t), k(t))
g2(c(t), k(t))

◆

where, for the usual isoelastic case

g1(c, k) ⌘
f 0(k)� ⇢� �

�
c, g2(c, k) ⌘ f(k)� �k � c

• Approximate dynamics
✓

ċ(t)
k̇(t)

◆
=

✓
@
@cg1(c, k)

@
@kg1(c, k)

@
@cg2(c, k)

@
@kg2(c, k)

◆✓
c(t)� c̄
k(t)� k̄

◆

where the Jacobian matrix is evaluated at steady state c̄, k̄

• Local stability depends on signs of eigenvalues of this Jacobian
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Ramsey-Cass-Koopmans

• Elements of the Jacobian matrix, evaluated at steady state

@

@c
g1(c, k) =

f 0(k)� ⇢� �

�
= 0 at k = k̄

@

@k
g1(c, k) =

f 00(k)

�
c < 0

@

@c
g2(c, k) = �1

@

@k
g2(c, k) = f 0(k)� � = ⇢ at k = k̄
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Ramsey-Cass-Koopmans

• Let A denote this Jacobian matrix

A =

 
0 f 00(k̄)

� c̄
�1 ⇢

!

• Eigenvalues characterized by determinant

det(A) = �1�2 =
f 00(k̄)

�
c̄ < 0

and trace

tr(A) = �1 + �2 = ⇢ > 0

• Hence roots real and of either sign, say

�1 < 0 < �2

and hence, as anticipated, exhibits saddle path dynamics
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Compute the eigenvalues

• Characteristic polynomial

p(�) = �2
� tr(A) + det(A)

• Solve the quadratic

p(�) = �2
� ⇢�+

f 00(k̄)

�
c̄ = 0

gives roots

�1 =
⇢�

q
⇢2 � 4f 00(k̄)c̄

�

2
< 0 <

⇢+
q
⇢2 � 4f 00(k̄)c̄

�

2
= �2
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Method of undetermined coefficients

• Write out approximate dynamics

ċ(t) =
f 00(k̄)c̄

�
(k(t)� k̄)

and

k̇(t) = �(c(t)� c̄) + ⇢(k(t)� k̄)

• Write this as a second-order differential equation in k(t), namely

k̈(t) = ⇢k̇(t)�
f 00(k̄)c̄

�
(k(t)� k̄)

• Now guess linear law of motion

k̇(t) = �(k(t)� k̄)

which implies that also

k̈(t) = �k̇(t) = �2(k(t)� k̄)
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Method of undetermined coefficients

• Plug in guesses and collect terms

h
�2

� ⇢�+
f 00(k̄)c̄

�

i
(k(t)� k̄) = 0

• Has to hold for any value of (k(t)� k̄), gives us again

�2
� ⇢�+

f 00(k̄)c̄

�
= 0

which implies the roots given on slide 21 above

• Also implies slope of the stable arm

c(t)� c̄ = (⇢� �)(k(t)� k̄)

where � < 0 denotes the stable root. Hence stable arm steeper
than k̇(t) = 0 locus
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Decentralized problem: households

• Endowed with initial capital stock k(0) > 0, depreciation rate �

• Endowed with one unit of labor, l = 1

• Supply k(t) and l = 1 to competitive firms for R(t) and w(t)

• Net assets a(t) return r(t)

ȧ(t) = r(t)a(t) + w(t)� c(t)

• Physical capital and other assets perfect substitutes (no risk), so
no arbitrage implies

R(t) = r(t) + �
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Decentralized problem: households

• Household problem is to choose c(t) � 0 to maximize

U =

Z 1

0
e�⇢t u(c(t)) dt

subject to the flow budget constraint

ȧ(t) = r(t)a(t) + w(t)� c(t)

• A ‘no-Ponzi-game ’ constraint rules out large negative a(t)

lim
T!1

q(T )a(T ) � 0, q(t) ⌘ exp
�
�

Z t

0
r(s) ds

�

where q(t) is the intertemporal price of consumption
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H(c, a,�) ⌘ u(c) + �(ra+ w � c)

• Key optimality conditions, for all t � 0,

Hc(c(t), a(t),�(t)) = 0

Ha(c(t), a(t),�(t)) = ⇢�(t)� �̇(t)

H�(c(t), a(t),�(t)) = ȧ(t)

along with initial condition and no-Ponzi condition etc

• Calculating the derivatives of the Hamiltonian

Hc(c, a,�) = u0(c)� �

Ha(c, a,�) = �r

H�(c, a,�) = ra+ w � c
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Decentralized problem: households

• Hence system of optimality conditions can be written

u0(c(t)) = �(t)

�̇(t) = (⇢� r(t))�(t)

ȧ(t) = r(t)a(t) + w(t)� c(t)

• Differentiating the first condition with respect to t gives

u00(c(t))ċ(t) = �̇(t)

• If u(c) is isoelastic, we have the simple consumption Euler equation

ċ(t)

c(t)
=

r(t)� ⇢

�

Hence consumption is growing if r(t) > ⇢ with interest sensitivity 1
�
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Decentralized problem: firms

• Hire capital K and labor L to maximize profits

F (K,L)�RK � wL

• First order conditions

FK(K,L) = R

FL(K,L) = w

• In per worker terms and using no arbitrage condition R = r + �

f 0(k) = r + �

f(k)� f 0(k)k = w
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Decentralized problem: equilibrium

• Equilibrium: (i) households maximize utility taking prices as
given, (ii) firms maximize profits taking prices as given, and (iii)
markets clear

L = 1, and k = a

• Implies system of differential equations

ċ(t)

c(t)
=

r(t)� ⇢

�
=

f 0(k(t))� � � ⇢

�

and

k̇(t) = ȧ(t)

= r(t)a(t) + w(t)� c(t)

= [f 0(k(t))� �]k(t) + [f(k(t))� f 0(k(t))k(t)]� c(t)

= f(k(t))� �k(t)� c(t)

• Coincides with planning problem
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Alternative approach to household problem

• Integrate up the flow budget constraints to get consolidated
intertemporal budget constraint

Z 1

0
q(t)c(t) dt = a(0) +

Z 1

0
q(t)w(t) dt

in terms of the intertemporal prices q(t)

• Then form the Lagrangian

L =

Z 1

0
e�⇢tu(c(t)) dt+ �

✓
a(0) +

Z 1

0
q(t)[w(t)� c(t)] dt

◆

with single (constant) multiplier �
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Alternative approach to household problem

• First order condition for c(t) is then just

e�⇢tu0(c(t)) = �q(t)

• Differentiating with respect to t gives

�⇢e�⇢tu0(c(t)) + e�⇢tu00(c(t))ċ(t) = �q̇(t)

• Then note

q̇(t) = �r(t)q(t)

• If u(c) is isoelastic, again have simple consumption Euler equation

ċ(t)

c(t)
=

r(t)� ⇢

�
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Next class

• Some further topics in growth theory

– technological change

– capital-labor substitution vs. automation

– imperfect competition
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