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This class

e Analyzing the dynamics of the Ramsey-Cass-Koopmans model

— a system of nonlinear difference equations
— log-linearization (convenient local approximation)
— solving model by method of undetermined coeflicients

— examples and introduction to Matlab



Log-linearization

e (Consider scalar function

Yt = f(CUt)

with steady state satisfying §y = f(Z). Local deviation in levels
ye —§ =~ f(z) (2 — 7)

or

Y

X

v =9y (f}((z))w> T — T

e Note the following approximation for log-deviations

Qtzlog(y—_t) zlog(l—kytjy) %yt_y
Y Y

Y



Log-linearization

e Hence in log-deviations coefficients are elasticities (units free)

w0y )

e Generalizes naturally to multivariate functions, if y; = f(x4, 2¢)
with ¥ = f(Z, Z) then

!

where f, and f, denote partial derivatives



Examples

e Power functions

y = xazb
implies
y=ax + bz

(of course, since exactly log-linear)

e Linear functions
y = ax + bz

implies

= (e (o)
p— €T Z
J axr + bz axr + bz
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Examples

e Combine these rules to log-linearize more complex expressions

y = f(x) = (ax + b)°

e (Gives

) ( ax )A
= c T
Y ar + b




Ramsey-Cass-Koopmans growth model

e Recall dynamical system in consumption ¢; and capital k;
' () = Bu'(cpyr) [f (keg1) +1 0] (Euler eq.)
and
ct + ki1 = flky) + (1 —=0)ky (resource constraint)

with given initial condition and transversality condition

e Next steps: (i) log-linearization around steady state ¢, k then
(ii) determine magnitudes of eigenvalues, stability



Log-linearizing the growth model

e Resource constraint in levels
ct + ki1 = f(ke) + (1 —0)ky

e Log-linearized version, treated as exact

A

e + kke1 = f1(K)kke + (1 — 8)kky
e Recall that in steady state

1=pf(k)+1—-4]

e Using this to simplify, gives

. 1.
cCt + kki11 = 5 K



Log-linearizing the growth model

e Consumption Euler equation in levels
u'(c) = Bu'(cop1) Ry,  Ripr = fl(kip) +1-96
e Log-linearized version, treated as exact
W' (¢)eé, = Bu" (€)Rééesr + Bu' ()RR
where
RRiyy = f"(k)kkyyr  and  BR=1

e Notation: the Arrow/Pratt measure of relative risk aversion




Log-linearizing the growth model

e With this notation
. . | R
Ct = G4l — —— Ryt1
o(c)

or

Ct41 — Ct = () Ry, Ri1 = Bf" (k)kkyy

e Note consumption growing, ¢;11 > ¢, when return on capital is

relatively high, R;11 > 0, i.e., when capital stock will be below
steady state, k;11 < 0 (just as in the phase diagram)

1
C

e The coefficient % is a measure of the intertemporal elasticity of

substitution (willingness to substitute consumption over time)
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Log-linearized growth model

e In short, pair of equations

B (k)k

Ct+1 = Ct + (o)

ki1
and
Eét + E]%t—l—l = BE/A%

e Implies a system of difference equations

Ct+1 1 — —5];((5];)5 —fg((lé)) i Ct
P _c 1 ke
t+1 - 3 ¢

What are the eigenvalues of this system?
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Eigenvalues of the growth model

e Recall that trace of coefficient matrix A is sum of eigenvalues
tI‘(A) = A + Ao
and determinant of A is product of eigenvalues

det(A) = A Ao

e Gives
//]2— 1
>\1+)\2=1—6f (_)C+—>2
o(c) B
and
1
AMA=—>1

B

e Hence both roots positive and at least one is explosive
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Eigenvalues of the growth model

Recall characteristic polynomial can be written
p(A) = A% —tr(A)N +det(A) = (A = A)(A = X2)
Now consider polynomial p(A) evaluated at A =1
p(1)=(1—XA1)(1—X2) >0 <« both roots on same side of +1

For the growth model we have

(L BPRE 1\ 1 (R
p(l) =1 <1 o(c) *5) 5T ol 0

Hence one stable root 0 < A1 < 1, one explosive root Ao > 1/8 > 1
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Implications for stability

As we saw in the phase diagram, system is saddle path unstable
For almost all initial conditions, system diverges from steady state
Initial capital ko pre-determined, given exogenously

Initial consumption ¢y not pre-determined, jumps to stable arm

Compute jump by looking at the solution for the linearized system
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Implications for stability
e Recall

Ct+1 Ct
A _— A A
< ki1 ) ( ki )

hence using A = VAV ™! and iterating forward

ét tvr—1 é0
~ — AV ~
(& )=vav= (i)

e Writing this out explicitly

V22Co — V12K v21Co — V11K

. ¢ ¢
Ct — V11 )\1 — V192 )\2
V11V22 — V12021 V11V22 — V12021
and
- v22Co — V12k0 4 v21Co — V11ko 4
kt — V21 )\1 — V929 )\
V11V22 — V12021 V11V22 — V12021
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Initial jump ¢

e If )9 is the unstable root, then setting

A V11 7
Co — — ko
v21

will neutralize the explosive dynamics

e Plugging this jump for initial consumption gives

Y11
U11V22 — V12021 V21

and similarly for capital accumulation

V11

Vo1 V12

(Y ~ ~
- Mo = Mg

ki = v21
V11V22 — V12021
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Simple representation

Let A = Ay denote the stable root

Solution for capital accumulation
ki1 =Mk,  t=0,1,..., ko given
Solution for consumption, inherits dynamics of capital

&= —k, t=0,1,...
U21

This function is the stable arm of the saddle path

Both capital and consumption converge monotonically to
steady-state, faster convergence the smaller is ||
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Saddle path in log-deviations

A

Co

stable arm

V21 ]%

Ct: +

V11

\/
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Method of undetermined coefficients

e Direct approach that will be usetul throughout course

e (uess linear law of motion for capital

ki1 = Vi ke
and likewise for consumption
&y = e ky
e Two coefficients that have to be determined

Yk > Yek
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Method of undetermined coefficients

e Resource constraint

A 1 -~
cCy + Rhiy1 = 5

e Plug in guesses and collect terms

[(_ﬂﬂck + Kbk — %/5} ki = 0

e This has to hold for any value of k;. Gives condition

_ 1_
Cck + kpr — Bk =0
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Method of undetermined coefficients

Consumption Euler equation

Bf" (k)k

Ct+1 = Ct +

o(c

ki1
)

Plug in guesses and collect terms

[@bckwkk — Yok —

This has to hold for any value of k;. Gives condition

Bf" (k)k

a(c)

m]

Ve Wk — Yok —

Bf" (k)k

o(c)

Vi =0

Two equations in two unknowns .k, VL
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Method of undetermined coefficients

e Use first condition to solve for .. in terms of 1.z

Ver = (% — %k)%

e Then plug this into second condition and rearrange to get a
quadratic in VP

) 5f”( e 1

e Looks familiar. This is exactly the same characteristic polynomial
we had before. Two solutions, one stable and one unstable
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Solution

e In short, the coeflicient ¢ 2s the stable eigenvalue

Ve = A € (0,1)

Can then recover the slope of the stable-arm

Yk = (%—wkk)g > 0
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So far, have simply confirmed the intuition in the phase diagram
But want to go further than that, want to actually solve the model
To do this, need specific functional forms and parameter values

Can then calculate i1, ¥ and study dynamics
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Numerical example

e Suppose standard functional forms

with parameter values a = 0.3, 0 =1 and p = § = 0.05 (annual)

e Implies steady state values

_pt-a)0 e
p+0o

e
+
>,
NJl oY

f'(k)k=—(1—a)(p+d)=-0.07
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Numerical example

e Use these steady state values to get coefficient matrix

] - Bk Rk .02 —0.07
A — p—
C 1 _
- 1 0.28  1.05
e Trace

tr(A) = 1.02 + 1.05 = 2.07
e Determinant

det(A) = (1.02)(1.05) — (0.07)(0.28) = 1.05
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Eigenvalues are roots of characteristic polynomial

p(A) = A2 —tr(A)N + det(A) = X2 — (2.07)A+1.05 =0

Solving this

A1 = 0.89,

Numerical example

gives

Choose stable root

e = A\ = 0.89

Ao = 1.18

Implies slope of the stable arm

%k:(

1
E_¢kk

i-

1.05 — 0.89

0.28
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Transition to steady state
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Initial capital ]ACO = —OA.l (i.e., 10% below steady state). Capital l%t+1 = gbkk/%t and
consumption ¢; = Y ke with Yrr = 0.89 and ., = 0.56.
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Scraps of Matlab code

From Matlab script “optimal growth example.m” in LMS

555705 Pparameters

alpha = 0.30; capital's share

beta = 1/1.05; %% discount factor
delta = 0.05; %% depreciation rate
sigma = 1; %% coefficient relative risk aversion
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—_ = = =

kbar
ybar
cbar

d2f

=

steady state

= kbar”alpha ;

1/beta - 1;

o\°
o\°

discount rate

o\°
o\°

rho+delta; steady—-state mpk

(alpha/r) "~ (1/(1l-alpha)); steady-state k
steady-state y
steady—state c

o® o o©
o® o o©

ybar — deltaxkbar;

alphax (alpha-1) xkbar” (alpha-2); %% £'' (kbar)
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$%%%% coefficient matrix

AA = [ l-betaxd2f*cbar/sigma , d2f*kbar/sigma;
—cbar/kbar , 1l/beta ]1;
$%%%% elgenvalues are roots of quadratic in lambda

lambdas = roots([1l,-trace (AA),det (AA)]);
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$%%%%% choose stable root
lambda = min (abs (lambdas));

1if abs (lambda) >1,
display ('check roots')

end

$%%%%% solution

psi_kk = lambda;

psi_ck = (1/beta - psi_kk)*kbar/cbar;
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Transition path from initial condition

$%%%% transitional dynamics

kO = -0.2; %% 1nitial k, log-dev from steady state
T = 51; %% horizon

kt = zeros (T, 1);

ct = zeros (T, 1);

kt (1) = kO;

ct (1) = psi_ckxk0;

for t=1:T-1,

kt (t+1) = psi_kkxkt (t);
ct (t+1) = psi_ck*kt (t+1);

end
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Simple plot

time = (0:1:T-1); %% time 1index

figure (1)

plot (time, kt, 'rd-"',time, ct, "bd-")

yvlabel ('log—-deviation from steady state')

xlabel ('time")

axis ([min(time) max(time) kO 0])
legend('capital', 'consumption', 'location', 'SouthEast')
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Next class

e Ramsey-Cass-Koopmans growth model in continuous time

— briet introduction to optimal control theory

— decentralization of planning problem
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