
Advanced Macroeconomics
Lecture 5: growth theory

and dynamic optimization, part four

Chris Edmond

1st Semester 2019

1



This class

• Analyzing the dynamics of the Ramsey-Cass-Koopmans model

– a system of nonlinear difference equations

– log-linearization (convenient local approximation)

– solving model by method of undetermined coefficients

– examples and introduction to Matlab
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Log-linearization

• Consider scalar function

yt = f(xt)

with steady state satisfying ȳ = f(x̄). Local deviation in levels

yt � ȳ ⇡ f 0(x̄)(xt � x̄)

or

yt � ȳ

ȳ
⇡

✓
f 0(x̄)x̄

f(x̄)

◆
xt � x̄

x̄

• Note the following approximation for log-deviations

ŷt ⌘ log
⇣yt

ȳ

⌘
= log

⇣
1 +

yt � ȳ

ȳ

⌘
⇡ yt � ȳ

ȳ
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Log-linearization

• Hence in log-deviations coefficients are elasticities (units free)

ŷt ⇡
✓

f 0(x̄)x̄

f(x̄)

◆
x̂t

• Generalizes naturally to multivariate functions, if yt = f(xt, zt)
with ȳ = f(x̄, z̄) then

ŷt ⇡
fx(x̄, z̄)x̄

f(x̄, z̄)
x̂t +

fz(x̄, z̄)z̄

f(x̄, z̄)
ẑt

where fx and fz denote partial derivatives
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Examples
• Power functions

y = xazb

implies

ŷ = ax̂ + bẑ

(of course, since exactly log-linear)

• Linear functions

y = ax + bz

implies

ŷ =
⇣ ax̄

ax̄ + bz̄

⌘
x̂ +

⇣ bz̄

ax̄ + bz̄

⌘
ẑ
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Examples

• Combine these rules to log-linearize more complex expressions

y = f(x) = (ax + b)c

• Gives

ŷ = c
⇣ ax̄

ax̄ + b

⌘
x̂
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Ramsey-Cass-Koopmans growth model

• Recall dynamical system in consumption ct and capital kt

u0(ct) = �u0(ct+1)
⇥
f 0(kt+1) + 1 � �

⇤
(Euler eq.)

and

ct + kt+1 = f(kt) + (1 � �)kt (resource constraint)

with given initial condition and transversality condition

• Next steps: (i) log-linearization around steady state c̄, k̄ then

(ii) determine magnitudes of eigenvalues, stability
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Log-linearizing the growth model

• Resource constraint in levels

ct + kt+1 = f(kt) + (1 � �)kt

• Log-linearized version, treated as exact

c̄ĉt + k̄k̂t+1 = f 0(k̄)k̄k̂t + (1 � �)k̄k̂t

• Recall that in steady state

1 = �
⇥
f 0(k̄) + 1 � �

⇤

• Using this to simplify, gives

c̄ĉt + k̄k̂t+1 =
1

�
k̄k̂t
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Log-linearizing the growth model

• Consumption Euler equation in levels

u0(ct) = �u0(ct+1)Rt+1, Rt+1 ⌘ f 0(kt+1) + 1 � �

• Log-linearized version, treated as exact

u00(c̄)c̄ĉt = �u00(c̄)R̄c̄ĉt+1 + �u0(c̄)R̄R̂t+1

where

R̄R̂t+1 = f 00(k̄)k̄k̂t+1 and �R̄ = 1

• Notation: the Arrow/Pratt measure of relative risk aversion

�(c) ⌘ �u00(c)c

u0(c)
> 0
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Log-linearizing the growth model

• With this notation

ĉt = ĉt+1 �
1

�(c̄)
R̂t+1

or

ĉt+1 � ĉt =
1

�(c̄)
R̂t+1, R̂t+1 = �f 00(k̄)k̄k̂t+1

• Note consumption growing, ĉt+1 > ĉt, when return on capital is

relatively high, R̂t+1 > 0, i.e., when capital stock will be below

steady state, k̂t+1 < 0 (just as in the phase diagram)

• The coefficient
1

�(c̄) is a measure of the intertemporal elasticity of
substitution (willingness to substitute consumption over time)
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Log-linearized growth model

• In short, pair of equations

ĉt+1 = ĉt +
�f 00(k̄)k̄

�(c̄)
k̂t+1

and

c̄ĉt + k̄k̂t+1 =
1

�
k̄k̂t

• Implies a system of difference equations

0

@
ĉt+1

k̂t+1

1

A =

0

B@
1 � �f 00(k̄)c̄

�(c̄)
f 00(k̄)k̄
�(c̄)

� c̄
k̄

1
�

1

CA

0

@
ĉt

k̂t

1

A

What are the eigenvalues of this system?
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Eigenvalues of the growth model
• Recall that trace of coefficient matrix A is sum of eigenvalues

tr(A) = �1 + �2

and determinant of A is product of eigenvalues

det(A) = �1 �2

• Gives

�1 + �2 = 1 � �f 00(k̄)c̄

�(c̄)
+

1

�
> 2

and

�1 �2 =
1

�
> 1

• Hence both roots positive and at least one is explosive
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Eigenvalues of the growth model

• Recall characteristic polynomial can be written

p(�) = �2 � tr(A)�+ det(A) = (�� �1)(�� �2)

• Now consider polynomial p(�) evaluated at � = 1

p(1) = (1��1)(1��2) > 0 , both roots on same side of +1

• For the growth model we have

p(1) = 1 �
✓

1 � �f 00(k̄)c̄

�(c̄)
+

1

�

◆
+

1

�
=
�f 00(k̄)c̄

�(c̄)
< 0

• Hence one stable root 0 < �1 < 1, one explosive root �2 > 1/� > 1
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Implications for stability

• As we saw in the phase diagram, system is saddle path unstable

• For almost all initial conditions, system diverges from steady state

• Initial capital k̂0 pre-determined, given exogenously

• Initial consumption ĉ0 not pre-determined, jumps to stable arm

• Compute jump by looking at the solution for the linearized system
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Implications for stability
• Recall

✓
ĉt+1

k̂t+1

◆
= A

✓
ĉt
k̂t

◆

hence using A = V ⇤V �1
and iterating forward

✓
ĉt
k̂t

◆
= V ⇤tV �1

✓
ĉ0
k̂0

◆

• Writing this out explicitly

ĉt = v11
v22ĉ0 � v12k̂0

v11v22 � v12v21
�t1 � v12

v21ĉ0 � v11k̂0
v11v22 � v12v21

�t2

and

k̂t = v21
v22ĉ0 � v12k̂0

v11v22 � v12v21
�t1 � v22

v21ĉ0 � v11k̂0
v11v22 � v12v21

�t2
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Initial jump ĉ0

• If �2 is the unstable root, then setting

ĉ0 =
v11
v21

k̂0

will neutralize the explosive dynamics

• Plugging this jump for initial consumption gives

ĉt = v11
v22

v11
v21

� v12

v11v22 � v12v21
�t1k̂0 =

v11
v21

�t1k̂0

and similarly for capital accumulation

k̂t = v21
v22

v11
v21

� v12

v11v22 � v12v21
�t1k̂0 = �t1k̂0
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Simple representation

• Let � ⌘ �1 denote the stable root

• Solution for capital accumulation

k̂t+1 = �k̂t, t = 0, 1, . . . , k̂0 given

• Solution for consumption, inherits dynamics of capital

ĉt =
v11
v21

k̂t, t = 0, 1, . . .

This function is the stable arm of the saddle path

• Both capital and consumption converge monotonically to

steady-state, faster convergence the smaller is |�|
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Saddle path in log-deviations

ĉ

k̂

ĉ0

k̂0

ĉt =
v21

v11
k̂t

stable arm
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Method of undetermined coefficients

• Direct approach that will be useful throughout course

• Guess linear law of motion for capital

k̂t+1 =  kk k̂t

and likewise for consumption

ĉt =  ck k̂t

• Two coefficients that have to be determined

 kk ,  ck
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Method of undetermined coefficients

• Resource constraint

c̄ĉt + k̄k̂t+1 =
1

�
k̄k̂t

• Plug in guesses and collect terms

h
c̄ ck + k̄ kk �

1

�
k̄
i
k̂t = 0

• This has to hold for any value of k̂t. Gives condition

c̄ ck + k̄ kk �
1

�
k̄ = 0
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Method of undetermined coefficients

• Consumption Euler equation

ĉt+1 = ĉt +
�f 00(k̄)k̄

�(c̄)
k̂t+1

• Plug in guesses and collect terms

h
 ck kk �  ck �

�f 00(k̄)k̄

�(c̄)
 kk

i
k̂t = 0

• This has to hold for any value of k̂t. Gives condition

 ck kk �  ck �
�f 00(k̄)k̄

�(c̄)
 kk = 0

• Two equations in two unknowns  ck, kk

21



Method of undetermined coefficients

• Use first condition to solve for  ck in terms of  kk

 ck =
⇣ 1

�
�  kk

⌘ k̄

c̄

• Then plug this into second condition and rearrange to get a

quadratic in  kk

 2
kk �

✓
1 � �f 00(k̄)c̄

�(c̄)
+

1

�

◆
 kk +

1

�
= 0

• Looks familiar. This is exactly the same characteristic polynomial

we had before. Two solutions, one stable and one unstable

22



Solution

• In short, the coefficient  kk is the stable eigenvalue

 kk = � 2 (0, 1)

Can then recover the slope of the stable-arm

 ck =
⇣ 1

�
�  kk

⌘ k̄

c̄
> 0
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• So far, have simply confirmed the intuition in the phase diagram

• But want to go further than that, want to actually solve the model

• To do this, need specific functional forms and parameter values

• Can then calculate  kk ,  ck and study dynamics
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Numerical example

• Suppose standard functional forms

f(k) = k↵, u(c) =
c1�� � 1

1 � �

with parameter values ↵ = 0.3, � = 1 and ⇢ = � = 0.05 (annual)

• Implies steady state values

k̄

ȳ
=

↵

⇢+ �
= 3,

c̄

ȳ
=
⇢+ (1 � ↵)�

⇢+ �
= 0.85

and

f 00(k̄)k̄ = �(1 � ↵)(⇢+ �) = �0.07
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Numerical example

• Use these steady state values to get coefficient matrix

A =

0

B@
1 � �f 00(k̄)c̄

�
f 00(k̄)k̄

�

� c̄
k̄

1
�

1

CA =

0

@
1.02 �0.07

�0.28 1.05

1

A

• Trace

tr(A) = 1.02 + 1.05 = 2.07

• Determinant

det(A) = (1.02)(1.05) � (0.07)(0.28) = 1.05
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Numerical example

• Eigenvalues are roots of characteristic polynomial

p(�) = �2 � tr(A)�+ det(A) = �2 � (2.07)�+ 1.05 = 0

• Solving this gives

�1 = 0.89, �2 = 1.18

• Choose stable root

 kk = �1 = 0.89

• Implies slope of the stable arm

 ck =
⇣ 1

�
�  kk

⌘ k̄

c̄
=

1.05 � 0.89

0.28
= 0.56
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Transition to steady state
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Initial capital k̂0 = �0.1 (i.e., 10% below steady state). Capital k̂t+1 =  kkk̂t and
consumption ĉt =  ckk̂t with  kk = 0.89 and  ck = 0.56.
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Scraps of Matlab code

From Matlab script “optimal_growth_example.m ” in LMS

%%%%% parameters

alpha = 0.30; %% capital's share
beta = 1/1.05; %% discount factor
delta = 0.05; %% depreciation rate
sigma = 1; %% coefficient relative risk aversion
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%%%%% steady state

rho = 1/beta - 1; %% discount rate

r = rho+delta; %% steady-state mpk

kbar = (alpha/r)^(1/(1-alpha)); %% steady-state k
ybar = kbar^alpha ; %% steady-state y
cbar = ybar - delta*kbar; %% steady-state c

d2f = alpha*(alpha-1)*kbar^(alpha-2); %% f''(kbar)
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%%%%% coefficient matrix

AA = [ 1-beta*d2f*cbar/sigma , d2f*kbar/sigma;
-cbar/kbar , 1/beta ];

%%%%% eigenvalues are roots of quadratic in lambda

lambdas = roots([1,-trace(AA),det(AA)]);
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%%%%%% choose stable root

lambda = min(abs(lambdas));

if abs(lambda)>1,
display('check roots')

end

%%%%%% solution

psi_kk = lambda;
psi_ck = (1/beta - psi_kk)*kbar/cbar;
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Transition path from initial condition

%%%%% transitional dynamics

k0 = -0.2; %% initial k, log-dev from steady state

T = 51; %% horizon

kt = zeros(T,1);
ct = zeros(T,1);

kt(1) = k0;
ct(1) = psi_ck*k0;

for t=1:T-1,

kt(t+1) = psi_kk*kt(t);
ct(t+1) = psi_ck*kt(t+1);

end
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Simple plot

time = (0:1:T-1); %% time index

figure(1)
plot(time,kt,'rd-',time,ct,'bd-')
ylabel('log-deviation from steady state')
xlabel('time')
axis([min(time) max(time) k0 0])
legend('capital','consumption','location','SouthEast')
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Next class

• Ramsey-Cass-Koopmans growth model in continuous time

– brief introduction to optimal control theory

– decentralization of planning problem
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