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This class

• Stability of systems of difference equation

– eigenvalues, eigenvectors etc

– ‘diagonalizing’ systems of difference equations

– implications for stability of linear dynamic systems
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Recall scalar case

• Scalar linear difference equation

xt+1 = axt + b, x0 given

• If a 6= 1

xt = x̄+ at(x0 � x̄), t � 0

with steady state

x̄ = (1� a)�1 b
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System of linear difference equations

• Now let’s consider a system of linear difference equations

✓
x1,t+1

x2,t+1

◆
=

✓
a11 a12
a21 a22

◆✓
x1,t
x2,t

◆
+

✓
b1
b2

◆

or in matrix notation

xt+1 = Axt + b

• Analogous steady state

x̄ = (I �A)�1b

(supposing the inverse is well-defined, more on this soon)
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Systems of linear difference equations

• Analogous solution

xt = x̄+At(x0 � x̄)

• Scalar dynamics characterized by behavior of at

• System dynamics characterized by behavior of At

• But matrix power At
is a complicated object. In general it is not

the matrix of powers

✓
a11 a12
a21 a22

◆t

6=
✓

at11 at12
at21 at22

◆

How then do we determine behavior of At
?
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Uncoupled systems

• Consider uncoupled system

✓
x1,t+1

x2,t+1

◆
=

✓
a11 0
0 a22

◆✓
x1,t
x2,t

◆
+

✓
b1
b2

◆

Coefficient matrix A is diagonal, no feedback between components

• In this special case it is true that

✓
a11 0
0 a22

◆t

=

✓
at11 0
0 at22

◆

• So, in this special case, the behavior of At
simply determined by

magnitudes of a11 and a22
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Diagonalizing a system
• Most systems of interest are coupled, matrix A not diagonal

• But large class of matrixes can be diagonalized. For these matrixes

V �1AV = ⇤

where ⇤ is a diagonal matrix with entries equal to the eigenvalues
of A and V is a matrix which stacks the corresponding

eigenvectors (more on these shortly)

• We then make the change of variables zt ⌘ V �1(xt � x̄) and study

V zt+1 = AV zt

that is, the uncoupled system

zt+1 = V �1AV zt = ⇤zt

7



Diagonalizing a system

• Solving the uncoupled system

zt = ⇤tz0

or in terms of the original coordinates

xt = x̄+ V zt = x̄+ V ⇤tV �1(x0 � x̄)

• These are just linear combinations of �t
terms from diagonal of ⇤t

• In short, eigenvalues � of A determine stability of xt

• So what are these eigenvalues?
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Eigenvalues and eigenvectors

If A is an n⇥n matrix, then a non-zero n⇥ 1 vector x is an eigenvector

of A if Ax is a scalar multiple of x

Ax = �x

for some scalar �. We then say � is an eigenvalue of A and x is an

eigenvector corresponding to �.
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Geometric interpretation

x

0

Ax

x

0

Ax = �x

In general Ax is not proportional to x. But if it is, then � is an

eigenvalue of A and x is an eigenvector of A corresponding to �.
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Magnitudes of eigenvalues

x

0

�xx

0

�x

0 < � < 1

� > 1

x0

�x �1 < � < 0

x0

�x
� < �1
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Ax = �x

• So a scalar � is an eigenvalue of a square matrix A iff

M ⌘ A� �I

is singular

, there are solutions to Mx = 0 other than x = 0
, the determinant of M is zero

• Consider scalar a. Let m ⌘ a� �. When does mx = 0 have

solutions other than x = 0? When m = 0. When is m = 0? When

� = a. For scalar a, single eigenvalue equal to coefficient itself
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Determinant: main idea

A =

✓
a11 a12
a21 a22

◆
= (a1,a2)

a1

a2

area = | det(A)|

a1 + a2

Absolute value of determinant of A equals area formed from columns

a1,a2 of A. Determinant equals zero if columns linearly dependent

(in which case matrix is singular, parallelogram collapses to a line).
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Finding eigenvalues

• The � are the numbers that make M = A� �I singular

• Matrix M singular when its determinant is zero. In 2-by-2 case

det(M) = det

✓
m11 m12

m21 m22

◆
= m11m22 �m12m21

• Therefore

det(A� �I) = det

✓
a11 � � a12
a21 a22 � �

◆

= (a11 � �)(a22 � �)� a12a21

= �2 � (a11 + a22)�+ a11a22 � a12a21
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Characteristic polynomial
• So for a 2-by-2 A, the eigenvalues � solve a quadratic equation

p(�) ⌘ �2 � (a11 + a22)�+ a11a22 � a12a21 = 0

(the ‘characteristic polynomial ’)

• Two roots. From the quadratic formula

�1,�2 =
(a11 + a22)±

p
(a11 + a22)2 � 4(a11a22 � a12a21)

2

If A diagonal, roots are simply �1 = a11 and �2 = a22

• More generally nth order polynomial, n roots. Roots may be real

or complex, repeated or distinct

• Repeated roots may lead to non-diagonalizable (‘defective ’)

matrices, i.e., have less than n linearly independent eigenvectors
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Finding eigenvectors

• Suppose � is an eigenvalue of A (from characteristic polynomial)

• Find eigenvector x associated with � by solving

(A� �I)x = 0

• In 2-by-2 case

✓
a11 � � a12
a21 a22 � �

◆✓
x1
x2

◆
=

✓
0
0

◆

Here � is fixed and we solve for x

• Eigenvector not unique, if x is an eigenvector associated with �
then so is cx for any c 6= 0. Needs a normalization.
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Implications for stability
• Recall

xt = x̄+ V zt = x̄+ V ⇤tz0

• That is, linear combinations of eigenvalues of the form

x1,t = x̄1 + v11�
t
1z1,0 + v12�

t
2z2,0

x2,t = x̄2 + v21�
t
1z1,0 + v22�

t
2z2,0

• Stable if all |�| < 1, unstable otherwise. Note initial conditions

z1,0 =
v22(x1,0 � x̄1)� v12(x2,0 � x̄2)

v11v22 � v12v21

z2,0 =
v11(x2,0 � x̄2)� v21(x1,0 � x̄1)

v11v22 � v12v21

• An unstable � dominates unless initial conditions are ‘just right’.
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Sink (all |�| < 1)
z2

z1

zt+1 = ⇤zt

+1

+1

�1

�1 �1��1

�2

��2

For any initial z0, system zt = ⇤tz0 ! 0 (the origin) hence xt ! x̄.

Example shown here has both roots �1,�2 2 (0, 1).
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Source (all |�| > 1)
z2

z1

zt+1 = ⇤zt

+1

+1

�1

�1 �1��1

�2

��2

For any initial z0 6= 0, system zt = ⇤tz0 diverges hence xt diverges too.

Example shown here has both roots �1,�2 > 1.
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Saddle (some |�| > 1)
z2

z1

zt+1 = ⇤zt

+1

+1

�1

�1 �1��1

�2

��2

System zt = ⇤tz0 diverges if any weight given to unstable roots.

Example here has 0 < �1 < 1 < �2 and zt = ⇤tz0 ! 0 iff z2,0 = 0.
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Saddle (some |�| > 1)

• Unstable eigenvalue dominates unless initial conditions ‘just right’

• As in the last example, suppose

0 < �1 < 1 < �2

• Then system explodes except in knife-edge case z2,0 = 0

• In terms of original coordinates, a line

z2,0 = 0 , x2,0 = x̄2 +
v21
v11

(x1,0 � x̄1)

If system starts on this line (‘stable arm ’,‘stable manifold ’) then

converges to steady state. Diverges for any other initial conditions
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Stable arm

x2

x1

xt+1 = x̄+A(xt � x̄)

x̄1

x̄2

x2,0 = x̄2 +
v21
v11

(x1,0 � x̄1)

stable arm
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Some key properties of eigenvalues

• Determinant of n-by-n matrix is product of eigenvalues

det(A) =
nY

i=1

�i, det(cA) = cn det(A)

• Trace of n-by-n matrix is sum of eigenvalues

tr(A) ⌘
nX

i=1

aii =
nX

i=1

�i, tr(cA) = c tr(A)
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Geometric intuition

A =

✓
a11 a12
a21 a22

◆
= (a1,a2)

a1

a2

area = | det(A)|

a1 + a2

area = | det(A)|

�1

�2

= �1�2
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Geometric intuition

�1

�2

�1

�2

= �1�2

"

" "2

⇤0 =

✓
�1 + " 0

0 �2 + "

◆

= (�1 + ")(�2 + ")

det(⇤0)det(⇤)

Note det(⇤0) = det(⇤) + tr(⇤)"+ "2, in this sense the trace of a matrix

is akin to the derivative of the determinant of that matrix.
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Summary for 2-by-2 case
• Determinant

det(A) = a11a22 � a12a21 = �1�2

• Trace

tr(A) = a11 + a22 = �1 + �2

• Characteristic polynomial

p(�) = �2 � (a11 + a22)�+ a11a22 � a12a21

= �2 � tr(A)�+ det(A)

= (�� �1)(�� �2)

• We will use these properties to characterize magnitudes of

eigenvalues and hence stability of dynamical system
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Nonlinear dynamical systems
• Consider system of nonlinear difference equations

✓
x1,t+1

x2,t+1

◆
=

✓
f1(x1,t, x2,t)
f2(x1,t, x2,t)

◆

or in vector notation

xt+1 = f(xt)

• Steady states, if any, are fixed points

x̄ = f(x̄)

• Local stability of x̄ depends on eigenvalues of Jacobian matrix

f 0(x) ⌘
 

@
@x1

f1(x1, x2)
@

@x2
f1(x1, x2)

@
@x1

f2(x1, x2)
@

@x2
f2(x1, x2)

!

evaluated at x = x̄
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Next class

• Application to the Ramsey-Cass-Koopmans growth model

– a system of nonlinear difference equations

– log-linearization (convenient local approximation)

– solving model by method of undetermined coefficients

– examples and introduction to Matlab
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