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This class

e Stability of systems ot difference equation

— eigenvalues, eigenvectors etc
— ‘diagonalizing’ systems of difference equations

— implications for stability of linear dynamic systems



Recall scalar case

e Scalar linear difference equation

Ti+1 = axy + b, xo given
o [fa=+1
xt:f+at(x0—:§), t>0

with steady state

T=(1—a)"tb



System of linear difference equations

e Now let’s consider a system of linear difference equations
<$1,t+1>:(a11 a12>(3?1,t)+<b1)
T2 141 az1 a9 T2t bo
or in matrix notation
Ty = Ax; +b
e Analogous steady state
z=(I—-A)""'b

(supposing the inverse is well-defined, more on this soon)



Systems of linear difference equations

Analogous solution
xr; =+ A'(xg — T)
Scalar dynamics characterized by behavior of a’

System dynamics characterized by behavior of A’

But matrix power A’ is a complicated object. In general it is not
the matrix of powers

a a ! CLt CLt
11 12 / 125[1 12
t

How then do we determine behavior of A*?



Uncoupled systems

e Consider uncoupled system

( T1,4+1 ) . ( aj; 0 ) ( T14 ) ( b1 )
= +
T2 441 0 a2 T2t bo
Coeflicient matrix A is diagonal, no feedback between components

e In this special case it is true that
t t
CL11 O L CLH O
<O a22>_<0 6’52)

e So, in this special case, the behavior of A? simply determined by
magnitudes of a1; and ago



Diagonalizing a system

e Most systems of interest are coupled, matrix A not diagonal

e But large class of matrixes can be diagonalized. For these matrixes
VAV = A

where A is a diagonal matrix with entries equal to the eigenvalues
of A and V is a matrix which stacks the corresponding
eigenvectors (more on these shortly)

e We then make the change of variables z; = V~!(a; — Z) and study
Vzii1=AVz
that is, the uncoupled system

Zt+1 = V_lAVZt = AZt



Diagonalizing a system

Solving the uncoupled system
2z = Az
or in terms of the original coordinates
T, =2+ Vzi=2 + VAV (z)— 2z
These are just linear combinations of A! terms from diagonal of A’

In short, eigenvalues A of A determine stability of a;

So what are these eigenvalues?



Eigenvalues and eigenvectors

If A is an n X n matrix, then a non-zero n X 1 vector @ is an eigenvector
of A if Ax is a scalar multiple of x

Ax = \x

for some scalar A. We then say A is an eigenvalue of A and @ is an
eigenvector corresponding to A.




Geometric interpretation

Ax
Ax =\

In general Ax is not proportional to . But if it is, then A is an
eigenvalue of A and x is an eigenvector of A corresponding to \.
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Magnitudes of eigenvalues

-/0<;’<1/‘7
0 /
AT

1<)\<O
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Ax = \x

® So a scalar A is an eigenvalue of a square matrix A iff
M=A-)\I
1S singular

< there are solutions to Max = 0 other than £ = 0
& the determinant of M is zero

e Consider scalar a. Let m = a — A\. When does max = 0 have
solutions other than £ = 07 When m = 0. When is m = 07 When
A = a. For scalar a, single eigenvalue equal to coefficient itself
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Determinant: main idea

A — ailp ai2 ) _
4 <&21 a2 (a17a2>

a; + as

Absolute value of determinant of A equals area formed from columns

ai,as of A. Determinant equals zero if columns linearly dependent

(in which case matrix is singular, parallelogram collapses to a line).
13



Finding eigenvalues

e The A\ are the numbers that make M = A — A\I singular

e Matrix M singular when its determinant is zero. In 2-by-2 case

mii1 MMi2

det(M) — det ( ) = MM11M9o292 — 1MM121M21

ma1 122

e Therefore

det(A — ) = det( ann—A - an )

az; Q22 — A

= (a11 — \)(a22 — \) — aiza91

2
= A" — (a11 + a22)\ + ar1az2 — ajaaz
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Characteristic polynomial

So for a 2-by-2 A, the eigenvalues A solve a quadratic equation
p(A) = A° — (a1 + a22)\ + ar1a22 — ar2as; = 0

(the ‘characteristic polynomial’)

Two roots. From the quadratic formula

a11 a22 a11 a22 )" — x(A11022 — 412021
(a11 + azz) & v/(a11 + aza)? — 4( )

)\17)\2 — 9

If A diagonal, roots are simply A1 = a1; and Ao = a9

More generally nth order polynomial, n roots. Roots may be real
or complex, repeated or distinct

Repeated roots may lead to non-diagonalizable (‘defective’)
matrices, i.e., have less than n linearly independent eigenvectors
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Finding eigenvectors

Suppose A is an eigenvalue of A (from characteristic polynomial)
Find eigenvector x associated with A by solving
(A—A)x =0
In 2-by-2 case
() (5)=(0)
azr Qg2 — A T2 0
Here A is fixed and we solve for @

Eigenvector not unique, if @ is an eigenvector associated with A
then so is cax for any ¢ # 0. Needs a normalization.
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Implications for stability
Recall

=%+ Vzi =2+ VAliz
That is, linear combinations of eigenvalues of the form

T14 = T1 + 11N\ 21,0 + vi2As290
Top = To + 21\ 210 + vaadh 29
Stable if all |A\| < 1, unstable otherwise. Note initial conditions

~ we(x10 — T1) — vi2(w20 — T2)

V11022 — U12V21

v11(T2,0 — T2) — v21(x1,0 — Z1)
V11V22 — V12021

An unstable A dominates unless initial conditions are ‘just right’.
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Sink (all |\ < 1)

22 A
Zt4+1 — A_Zt

+1

1

- >3- & e -
—1 A1 —+

For any initial zg, system z; = A’zg — 0 (the origin) hence x; — Z.

Example shown here has both roots A1, Ay € (0,1).
18



Source (all [A| > 1)

22 A
Zip1 = Az,
\ A2 A /
+1
- 22 & e >
_)\1 1 YV 11 )\1 Z1
/ —1 \
Y

For any initial zg # 0, system z; = Az diverges hence x; diverges too.

Example shown here has both roots A1, Ao > 1.
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Saddle (some |)\| > 1)

22 A
Zip1 = Az,
\ A2 A /
+1
- S & S >
—1 — A1 T A1 +1 ~1
/ —1 \
Y

System z; = Atz diverges if any weight given to unstable roots.
Example here has 0 < A\; < 1 < Ay and z; = Afzg — 0 iff z90 = 0.

20



Saddle (some |)\| > 1)

Unstable eigenvalue dominates unless initial conditions ‘just right’

As in the last example, suppose
O< A <1< A

Then system explodes except in knife-edge case 299 = 0

In terms of original coordinates, a line

_ U21 _
z90 =0 = o0 = To + v—(ém,o — Z1)
11

[f system starts on this line (‘stable arm’, stable manifold’) then
converges to steady state. Diverges for any other initial conditions
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Stable arm

Lt4+1 — T + A(a:t — 3_3)

stable arm

v
T2,0 = T2 + ﬂ(56’1,0 — 1)
U11
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Some key properties of eigenvalues

e Determinant of n-by-n matrix is product of eigenvalues

det(A) =[x,  det(cA) = c"det(A)
1=1

e Trace of n-by-n matrix is sum of eigenvalues

tr(A) = Z Qi = Z i tr(cA) = ctr(A)
i=1 i=1
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Geometric intuition

A
area = |det(A)|
= A2
>
A1
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Geometric intuition

_ )\1 0 ! )\1‘|‘8 O
AA_<0 ,\2> AA_( 0 )\2—|—5>

R N - n "

Note det(A’) = det(A) + tr(A)e + £2, in this sense the trace of a matrix

is akin to the derivative of the determinant of that matrix.
25



Summary for 2-by-2 case

Determinant

det(A) = a11a22 — a12a21 = A1 \2
Trace

tr(A) = ay1 + a2 = A1 + Ao
Characteristic polynomial

p(A) = X? = (a11 + a22) A + a11a22 — ajoas
= A2 — tr(A)\ + det(A)

= (A= A)(A = Ao)

We will use these properties to characterize magnitudes of
eigenvalues and hence stability of dynamical system
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Nonlinear dynamical systems

e (Consider system of nonlinear difference equations

( L1441 ) _ ( fi(x14,224) )
T2 t+1 fZ(wl,ta 372,75)
or in vector notation
xir1 = f(xe)
e Steady states, if any, are fixed points
r = f(z)
e Local stability of & depends on eigenvalues of Jacobian matriz
0 0
f’(:l:) _ @fl(wlaﬁﬂ %ﬁ(aﬁl,wz)
3—xlf2($17$2) a—me(CUl,CUQ)

evaluated at € = &
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Next class

e Application to the Ramsey-Cass-Koopmans growth model

— a system of nonlinear difference equations
— log-linearization (convenient local approximation)
— solving model by method of undetermined coeflicients

— examples and introduction to Matlab
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