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This class

e Ramesy-Cass-Koopmans optimal growth model in discrete time

— optimal savings, not an exogenous constant
— intertemporal utility maximization

— characterization of solution, two-dimensional phase diagram
— saddle-path dynamics (sketch)



Ramesy-Cass-Koopmans growth model

e Optimal savings, not an exogenous constant

e Solve the problem of a ‘benevolent social planner’

— how should society save?

— in the absence of frictions, the outcome chosen by the social planner
can generally be implemented using market arrangements (a version
of the second welfare theorem)

— will see how to do this decentralization later



Setup
Discrete time t = 0,1, 2, ...

Aggregate production function

}/;5 — F(Kt7L)

(for now, keep things simply by setting A; =1 and L; = L)

Physical capital depreciates at rate o
Kt+1:(1—5)Kt—|—It, O<(5<1,
Goods may be either consumed or invested

Ci+1I; =Y,

Gives the sequence of resource constraints, one for each date

Cy+ Kiy1 = F(Ky, L)+ (1 —90) K,
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Ko >0

Ko >0



Intensive form

e In per worker units

etc

e Resource constraints

Ct + ]{Tt_|_1 = f(kt) + (1 — 5)]{775, ko >0



Intertemporal utility

Social planner seeks to maximize intertemporal utility
{Ct}t 0 Zﬁt Ct O<6<1

with strictly concave period utility «'(¢) > 0, v”(c) <0

Future is discounted by constant factor (5

]‘7 /67 /827 /837
U(-) is time-separable, marginal utility of date-t consumption
ou ()
(%t

depends only on ¢;, not consumption on other dates

— Btu/(ct)

Infinite horizon keeps model ‘stationary’, no life-cycle effects



Social planner’s problem

e Lagrangian with multiplier A; > 0 for each resource constraint

L= Bulee)+ > M[f(ke) + (1= 8kt — ¢t — ke
t=0 t=0

e Some key first order conditions

Ct . 5tu’(ct) — )\t =0
k’t_|_1 . _)\t -+ )\t—l—l [f/(kt—I—l) + 1 — 5} =0
)\t . f(kt) -+ (1 — 5)kt — Ct — kt_|_1 =0

These hold at every date



Key intertemporal condition

e Eliminating the Lagrange multipliers

u'(cr) = Bu' (cen) | f' (k1) +1 = 0]

(the ‘consumption Euler equation’)

e MRS between ¢t and ¢t + 1

u'(ct)

Bu'(cry1)

MRT between t and ¢ + 1

fi(kiy1) +1 -0

Planner equates MRS and MRT



Dynamical system

e (ives a system of two nonlinear difference equations in ¢;, k¢

u'(cr) = Bu' (ce1) | f (k1) +1 = 0]

and

Ct —+ kt_|_1 — f(kt) + (1 — (5)]675

e Two boundary conditions: (i) initial kg > 0 given, and (ii) the
“transversality condition’

lim 8" (ep)krir =0
T—o00

(analogous to k711 = 0 we would have in finite-horizon model)



Steady state

e Steady state where Ac; = 0 and Ak; = 0. Let ¢*, k* denote steady
state values. These are determined by

1= B[f (k) +1— 4]
and
&+ k= f(k) 4+ (1 =0k

e Steady state Euler equation pins down k*, resource constraint then
determines c*, in particular

¢ = (k) — ok
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Modified golden rule

Let C'(k) denote consumption sustained by holding k; fixed at k
C(k)= f(k) — ok

C'(k) is maximized at the ‘golden rule’ level, where
f'(k) =46

(remember that in this simplified setup ¢ = n = 0)
Steady state capital stock determined by
, 1
fllk)=p+4, p=--1>0
B
where p > 0 is the pure rate of time preference

Hence steady state capital is less than the golden rule level
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Qualitative dynamics

e Consumption dynamics

Ct41 > C & ki1 < k7
e (Capital dynamics

ki1 > ke & c: < C(ky)

e Divides ki, c; space into four regions. Flows can be analyzed with a
two-dimensional phase diagram
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consumption per worker, ¢

0

*

Phase diagram in k;, ¢; space

Ac =0
sustained consumption
““““““ B C(k) = f(k) — Sk
‘ > l
k*

capital per worker, k&
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Determining ¢

Capital kg is pre-determined (historically given) at date t = 0

Consumption ¢y not pre-determined, can ‘jump’ within feasible set
0 < cg < C(ko) + ko

Consumption cg jumps to ‘stable arm’ of the dynamical system

Initial consumption is the one degree of freedom that can be used
to avoid undesirable trajectories
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consumption per worker, ¢

Co

Stable arm

I Ac =0
stable arm
sustained consumption
““““““ C o) = f() — 5k
-/ p |
|
I l
1
o ko k*

capital per worker, k&
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Next class

e Stability of systems of difference equation

— eigenvalues, eigenvectors etc
— ‘diagonalizing’ systems of difference equations

— implications for stability of dynamic systems

e Will then start to put these tools to work
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