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This class

• More on the search model of unemployment

• Comparative statics and dynamics local to steady state

• Constrained efficiency [not examinable]
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Steady state equilibrium

• Steady state (u, w, ✓) solves

(1) w = (1 � �)b + �(1 + ✓)z (wage curve)

(2) w = z � (r + �)
z

q(✓)
(marginal productivity)

(3) u =
�

� + f(✓)
(Beveridge curve)

• Solve (1) and (2) simultaneously for w, ✓. Then recover u from (3)

and then v = ✓u etc. Recover W, U, J from Bellman equations.
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Steady state w, ✓

labor market tightness

wage

✓

w

wage curve

w = (1 � �)b + �(1 + ✓)z

marginal productivity condition

w = z � (r + �)
z

q(✓)
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Increase in z

• Consider an increase in productivity z

• Shifts up both wage curve and marginal productivity curve

• So wage w unambiguously rises

• What about net effect on market tightness? To determine this,

eliminate w from (1)-(2) to get ✓ as an implicit function of z

g(✓, z) ⌘ (r + �) + �f(✓) � (1 � �)
z � b

z
q(✓) = 0

• Then derivative of ✓ with respect to z is

d✓

dz
= �

gz(✓, z)

g✓(✓, z)

where both partial derivatives are evaluated at steady state
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Increase in z

• Calculating the partial derivative with respect to z

gz(✓, z) = �(1 � �)q(✓)
b

z2
< 0

• Calculating the partial derivative with respect to ✓

g✓(✓, z) = �f 0(✓) � (1 � �)
z � b

z
q0(✓) > 0

(since f 0(✓) > 0 and q0(✓) < 0)

• Hence

d✓

dz
= �

gz(✓, z)

g✓(✓, z)
> 0

• Shift in marginal productivity dominates shift in wage curve.
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Net effect is for ✓ to rise

labor market tightness

wage

✓

w

wage curve

marginal productivity condition

w�

✓
�
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Increase in z

• Increase in z increases w and labor market tightness ✓

• Implies counterclockwise rotation along Beveridge curve

• Hence unemployment u falls and vacancies v rise
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So u falls and v rises

v

v�

u� u

vacancy rate

unemployment rate

Beveridge curve

v = ✓u
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Aside on balanced growth

• Permanent increase in z permanently reduces u

• Not consistent with balanced growth (implies u trend decreasing)

• Key is that benefits b fixed, so wage does not absorb all of the

productivity increase

• If instead b = b̄z for some b̄ 2 (0, 1) then ✓ invariant to z hence u, v
likewise invariant to z

• If so, have constant unemployment u along balanced growth path
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Other comparative statics

• Higher b (or b̄) shifts up wage curve

– w rises but ✓ falls, hence from Beveridge curve u rises and v falls

• Higher � shifts up wage curve

– w rises but ✓ falls, hence from Beveridge curve u rises and v falls

• Higher r shifts down marginal productivity curve

– w, ✓ both fall, hence from from Beveridge curve u rises and v falls

• Higher � shifts down marginal productivity curve

– w, ✓ both fall
– but also shifts out Beveridge curve
– hence u falls further, net effect on v ambiguous
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Dynamics: setup

• Now consider transitional dynamics around steady state

• Stationary environment with constant z, r, � etc

• Bellman equations for firms

rJ(t) = z � w(t) + J̇(t) + �(V (t) � J(t))

rV (t) = �z + V̇ (t) + q(✓(t))(J(t) � V (t))

with change in ‘asset values’ J̇(t), V̇ (t)
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Dynamics: setup

• Bellman equations for workers

rW (t) = w(t) + Ẇ (t) + �(U(t) � W (t))

rU(t) = b + U̇(t) + f(✓(t))(W (t) � U(t))

• Free entry

V (t) = 0 ) V̇ (t) = 0

• Nash bargaining

W (t) = U(t) + �(W (t) � U(t) + J(t))

which also implies

Ẇ (t) = U̇(t) + �(Ẇ (t) � U̇(t) + J̇(t))
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Dynamics: setup

• Same algebra as previous lecture then gives wage curve

w(t) = (1 � �)b + �(1 + ✓(t))z

• And also have law of motion for unemployment

u̇(t) = �(1 � u(t)) � f(✓(t))u(t), u(0) > 0 given
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Dynamics: solution overview

• Now consider dynamics of key variables u(t), w(t), ✓(t)

• Unemployment u(t) is predetermined, has initial condition u(0)

• Wage w(t) and vacancies v(t) are jump (control) variables

• Hence ✓(t) ⌘ v(t)/u(t) is also a jump variable

• Reduces to a single differential equation in ✓(t)
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Differential equation in ✓(t)

• Start with the dynamics of the value of a filled job

J̇(t) = (r + �)J(t) � (z � w(t))

• Using wage curve this becomes

J̇(t) = (r + �)J(t) + �z✓(t) � (1 � �)(z � b)

• But from free entry V (t) = 0 etc also have

J(t) =
z

q(✓(t))

• So J is strictly increasing function of ✓

• Can write this as an autonomous differential equation in ✓(t)
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Differential equation in ✓(t)

• Differentiating the last expression

J̇(t) = �zq(✓(t))�2q0(✓(t))✓̇(t)

• Eliminating J̇(t) and rearranging gives

↵(✓(t))
✓̇(t)

✓(t)
= g(✓(t))

where ↵(✓) is the elasticity of the vacancy filling rate

↵(✓) ⌘ �
q0(✓)✓

q(✓)
2 (0, 1)

and where g(✓) is the expression we had on slide 5 above

g(✓) ⌘ (r + �) + �f(✓) � (1 � �)
z � b

z
q(✓)
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Qualitative dynamics

• Since g(✓) = 0 and g0(✓) > 0 for all ✓ we have

g(✓) > 0 , ✓ > ✓

• And that implies

✓̇(t) > 0 , ✓(t) > ✓

• In short, the differential equation in ✓(t) is unstable

• As usual, solution is for ✓(t) to immediately jump to steady state ✓
so as to avoid explosive trajectories

18



Qualitative dynamics

• Then have from wage equation that w(t) immediately jumps to

w = (1 � �)b + �(1 + ✓)z

• And then unemployment evolves essentially independently

u̇(t) = �(1 � u(t)) � f(✓)u(t), u(0) > 0 given

• This can be rewritten

u̇(t) = �(� + f(✓))(u(t) � u), ū =
�

� + f(✓)

• Hence

u̇(t) > 0 , u(t) < u
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Saddle path dynamics

u

✓

u

✓
✓̇ = 0

u̇ = 0

u0
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v(t) = ✓u(t)

u

v

u

v

✓̇ = 0

u̇ = 0

u0

v0
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Transitional dynamics following increase in z

u

v

v0

v

✓̇ = 0

u̇ = 0

v�

u� u
(= u0)
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Appendix: constrained efficiency

[not examinable]
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Constrained efficiency

• What is the efficient amount of unemployment in this economy?

That is, what level of unemployment would be chosen by a planner

who faces the same search frictions?

• Planning problem is to choose u(t), v(t) to maximize

Z 1

0
e�rt

⇥
z(1 � u(t)) + bu(t) � zv(t)

⇤
dt

subject to

u̇(t) = �(1 � u(t)) � f(✓(t))u(t), u(0) > 0 given

v(t) = ✓(t)u(t)
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Constrained efficiency

• Hamiltonian for this problem can be written

H = z(1 � u) + bu � z✓u + µ(�(1 � u) � f(✓)u)

with multiplier µ on the law of motion for unemployment

• Key optimality conditions

✓(t) : �zu(t) � µ(t)f 0(✓(t))u(t) = 0

and

u(t) : �z + b � z✓(t) � µ(t)(� + f(✓(t))) = rµ(t) � µ̇(t)
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Constrained efficiency

• Evaluating these at steady state and using q(✓) = ✓f(✓) these

reduce to a single condition determining the planner’s optimal ✓

(r + �) + ↵(✓)f(✓) � (1 � ↵(✓))
z � b

z
q(✓) = 0, ↵(✓) ⌘ �

q0(✓)✓

q(✓)

• By contrast, in the decentralized equilibrium we had

(r + �) + �f(✓) � (1 � �)
z � b

z
q(✓) = 0

• These two expressions will coincide if and only if

↵(✓) = �

that is, if the elasticity of the vacancy filling rate happens to equal

labor’s bargaining weight (Hosios 1990).
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Cobb-Douglas example

• In general ↵(✓) endogenous, but if Cobb-Douglas matching

F (u, v) = u↵v1�↵

then q(✓) = ✓�↵
and ↵(✓) = ↵ is constant

• Then the level of labor market tightness ✓ and hence the level of

unemployment u will be efficient only in the knife edge case

↵ = �

• Moreover

– if ↵ > �, then equilibrium unemployment less than optimal
– if ↵ < �, then equilibrium unemployment more than optimal
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Intuition: congestion externalities

• Firms and workers congest each other

– one more hiring firm is good for searching workers but bad for other
hiring firms

– one more searching worker is good for hiring firms but bad for other
searching workers

• When ↵(✓) > �, inefficiently many hiring firms and inefficiently

low unemployment rate

• When ↵(✓) < �, inefficiently few hiring firms and inefficiently high

unemployment rate

• When ↵(✓) = �, externalities are internalized
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