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This class

e Solow-Swan model in continuous time

— makes for simpler calculations
— greater transparency in calibration

e Implications and applications

— balanced growth path

— long-run effects of changes in savings rate
— golden rule

— speed of convergence

— examples



Towards continuous time

e Period length A > 0 in units of calendar time
e Periodst =0,4A,2A,3A, ...

e All flows multiplied by period length, so for example

Kiin — Ky =LA —0AK,
and
Apyn = GgAAt

Lipn = "Ly

(in anticipation of continuously-compounded growth rates)



Towards continuous time
e Divide by A >0

K — K

”AA L= I, — 6K,

and
At—I—A — At GgA — 1
— Ay
A A

Lizn—Ly e —1

t+A t € L,

A A
e We now want to take limit as period length shrinks A — 0.
Using ’'Hopital’s rule,

:I:A_l

lim = x
A—0 A

(or can use €2 ~ 1+ zA)



Continuous time limit

o Gives
K(t) = d[;(t) _I(t) — SK (1)
and
At) = %Z(f) = gA(t), L(t) = dl:i—?(ft) = nL(t)

e Productivity A(t) and the labor force L(t) grow exponentially

g = Af) = e A(0)

Lg =n = L(t)=e"L(0)

N— | N
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Solow-Swan 1n continuous time

Time t > 0
Capital accumulation
K(t) =I(t) — 6K (t)
Exogenous productivity and labor force

A(t) = gA(t),  L(t) = nL(t)

I(t) = S(t) = sY (t) = sF(K(t), A(t)L(t))

Aggregate production function Y = F(K, AL) satisfying the usual
assumptions



Solow-Swan 1n continuous time

e Hence
K(t) = sF(K(t), A(t)L(t)) — 6K (t)

e Define intensive variables as usual k = K/AL, y =Y /AL, y = f(k)
etc and note

k(1) '

VN
~

N—"
-
~

N——"

e Hence in intensive form

k(t) = sf(k(t)) = (8 4 g +n)k(t) = »(k(1))

An autonomous nonlinear differential equation in k(t) with
transition function (k)



Solow-Swan 1n continuous time

e Steady state £* where k(t) = 0, i.e., solves usual condition
sf(k") = (0 + g+ n)k"
o At k*, sf'(k*) is less than 6 + g + n, i.e., ¥'(k*) < 0 [why?]

e (Qualitative dynamics

k(t) >0 & sf(k(t)) > (6 4+ g+ n)k(t)

=3 k(t) < k™

k() <0 o sf(k(t) < (64 g+ n)k(t)

& k(t) >k~
e Converges k(t) — k*, steady state k* is stable (for all £(0) > 0).
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Phase diagram




Linear differential equation

e To understand these stability properties more systematically, let’s
begin with simple scalar linear differential equations, such as

t(t) = Ax(t) + b, x(0) given

e Steady state if X # 0

e Can then write in deviations from steady state
2(t) = Mx(t) — x7)

Notice that () = Lx(t) = & (x(t) — x*) so &(t) is also the time

derivative of the deviation from steady state
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Linear differential equation

Stability properties determined by magnitude of coeflicient A

If A#0
x(t) = ¥ + eM(x(0) — z*), t>0

If A <0 then z(t) converges (monotonically) to x* as t — oo. If
A > 0 then x(t) diverges to 00 depending on sign of z(0) — x*

If A =0, no steady state and simply
x(t) = tb+ z(0)

In short steady state stable if A < 0 and unstable otherwise.
In linear system, local stability implies global stability
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Nonlinear differential equation

e (Consider scalar nonlinear differential equation
z(t) = ¥(x(t)), z(0) given
Steady states determined by
0 =t(z”)

May be many, or none
e Stability local to a steady state depends on sign of ¢’ (x*)

e Approximate solution, local to x*

x(t) ~ " + eV @ L(0) — 2*), >0

So that x(t) — z* if coefficient ¥'(z*) < 0
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Approximate Solow-Swan dynamics

e Exact nonlinear differential equation
k(t) = sf(k(t)) = (6 + g +n)k(t) = Y (k(1))
e Approximate solution, local to k*
k() ~ k" + eV Fl(E0) - k"), t>0
where
V() =sf(k*)—(6+g+n)<0

e Weighted average of initial k£(0) and steady state k* with weight on
k(0) decreasing exponentially
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Balanced growth path

Asymptotically k(t) — k* and y(t) — y* = f(k*)

Hence capital K(t), output Y (¢) and consumption C(t) all
asymptotically grow at g +n

Hence capital per worker K (t)/L(t), output per worker Y (t)/L(t)
and consumption per worker C(t)/L(t) all asymptotically grow at g

Long run growth independent of savings rate s and independent of
initial conditions K (0), A(0), L(0).
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Changes in savings rate s

Has level effect on £* and hence on y* and c¢*. How do we formally
determine this level eftect?” Use comparative statics

Recall k* solves
sf(k*) =00 +g+n)k”

Implicitly determines k* as a function of s. Write k* = k(s) so
sf(k(s)) = (0 + g+ n)k(s)

Differentiate both sides and rearrange

oy f (k")
M G e
which is positive since sf/(k*) < (6 + g +n)

> 0

In short, a permanent increase in the savings rate s permanently
increases k* (but does not change long run growth)
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Golden rule
e Consumption c¢* = ¢(s) via
c(s) = (1 = s)f(k(s)) = f(k(s)) = (0 + g + n)k(s)
An increase in s may increase or decrease c¢(s)

e What level of s maximizes steady state ¢* = ¢(s) 7 First order
condition for this problem

ds)=0 & [f’(k) —(6+g+ n)] K (s) =0
Since k'(s) > 0 this requires
fl(k)=0+g+n

e Choose s to make k(s) = k* such that f'(k*) =9+ g+ n.
Equivalently, so that

(k")

S
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Speed of convergence

e Recall that speed of convergence depends on magnitude of
Y (k) =sf (k") —(6+g+n)<0

e Can write this

o) = LEE 54 gm)
= (64+g4+n)—(0+g+n)

_ (1 ACHLE
f(k*)

e Speed of convergence determined by (i) the degree of concavity in
the production function and (ii) the effective depreciation rate

)(5+g+n)<0
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Cobb-Douglas example

e Suppose aggregate production function
Y =F(K,AL) = K“(AL)'™®,  0<a<1
so that in intensive form

y = f(k) =k~

e In this special case, the elasticity of output with respect to capital
1s constant

HOLE.
f (k)

Consequently, the golden rule savings rate is just s = «
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Cobb-Douglas example

e Steady state capital

sk =(0+9g+n)k =

e Steady state capital /output ratio

k* S
y* d+g+n

19

= (




Cobb-Douglas example

e Amusingly, for the Cobb-Douglas case the nonlinear differential
equation can be solved exactly. This relies on a simple trick

e It turns our that in the Cobb-Douglas case the Solow-Swan model
implies a linear differential equation in the capital/output ratio

e Let x(t) denote the capital /output ratio, which in this case is

x(t) = ];((z)) — Ség _ k(t)l—a

with given initial condition

z(0) = k(0)17 > 0
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Cobb-Douglas example

e So in this special case we have the linear differential equation
#(t) = (1 — ) [s —(5+g+ n)x(t)}
e This has the exact solution

x(t) = eMa(0) + (1 — eM)a¥, t>0

where the steady state is
kK S

y* :5—|—g—|—n

Qj*

and where the speed of adjustment is
A=—1—-a)(d+g+n) <0

(note, this is A = ¢’(k*), the derivative of the transition function
as per slide 17 above)
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Cobb-Douglas example

1

e Can then write the exact solution for k(t) = x(t)T-= as

1

k(t) = (e/\tk(O)l_O‘ + (1 — e)‘t)k*l_o‘) T >0

e Rapid convergence to £* when the speed of adjustment coeflicient
A= —(1—a)(d+ g+ n) has large magnitude
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Next class

e Ramesy-Cass-Koopmans optimal growth model in discrete time

— optimal savings, not an exogenous constant

— intertemporal utility maximization
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