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This class

e Optimal monetary policy in a liquidity trap with commitment

e Further reading

o Werning (2012): Managing a liquidity trap: Monetary and fiscal
policy, MIT working paper, section 4



Optimal monetary policy with commitment

e Monetary policy minimizes

L = % /OOO e Pt (z(t)? 4+ Am(t)?) dt

subject to the constraints

i(t) = o (i(t) — m(t) — " (1))
7(t) = pr(t) — ka(t)
i(t) >0

taking as given path of natural real rate r"(t)

e Control 7, state x, 7w with free initial conditions x(0), 7(0)



Optimal monetary policy with commitment

e Hamiltonian for this problem

M= %(wQ ) (o i — 7 — 1Y) + i (o — Ra) — i

with multipliers u,, ur and multiplier on ZLB constraint ¢
e Key optimality conditions
ta (o™t = (1), Y(t)i(t) =0 with comp. slackness
and

pra(t) — fa(t) = z(t) — Krpx(t)
plix(t) — fin(t) = M (t) — 0 e (t) + ppn (t)



Optimal monetary policy with commitment

e Hence system can be written

with
fuz () = ppie(t) — 2(t) + Kpix(2)
fir(t) = =Am(t) + (7_1Na3(t)
(t) = o~ (it) — 7 (t) — " ()
7(t) = pr(t) — ka(t)

taking as given path natural real rate r™(t)

e Boundary conditions: (i) u,(0) =0 and p,(0) = 0, since both z(0)
and 7(0) are free, and (ii) two transversality conditions



Preliminaries

Suppose ZLB not binding, ¥ (t) = 0 hence u,(t) = fi,(t) = 0 so that
2(t) = Kpx ()
Implies familiar targeting rule, as in Lecture 16 slide 15
#(t) = kfin(t) = m( ~w(t) + 0_10) — k(D)
But from the dynamic IS curve
(t) = o7 (it) — 7w (t) — r(t))
Solving for i(t) then gives
i(t) =1(r"(t),w(t)), where I(r,m):=r+ (1 —ocr\)m

This is the optimal nominal rate whenever the ZLB is not binding.
I(r,m) > 0 is necessary for ZLB to not bind. But not sufficient.
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Approach

Three phases

I. During the liquidity trap, t € [0,T)

IT. Just out of the trap, t € [T, T), some endogenous T>T

A

ITI. After the storm has passed, t € [T, c0)

Need to ‘stitch together’ three phase diagrams
Key is whether x(t), w(t) are free at critical dates t = 0, T, T

Solve backwards from terminal conditions



Phase III. After the storm

A

At beginning of Phase III 2(T), n(T) are given (not free)
ZLB is not binding so i(t) = (7, w(t))

Under this control, motion of system given by

t(t) = —kA7(t)
7(t) = pr(t) — ka(t)

Solve with method of undetermined coefficients

z(t) = ¢m(t)

for some ¢ to be determined, see appendix for details



Phase III. After the storm

¢ is slope of saddle-path through (0,0) with i(t) = I(7, 7(t)) for t € [T, c0)
X

X = @it

> 7T
O




Phase 11. Just out of the trap

At beginning of Phase I x(T), w(T') are given (not free)

Liquidity trap is over but i(¢) = 0 is still optimal. Policy commits
to keeping i(t) = 0 even after trap is over

Motion of system given by

i(t) = —o N mw(t) +7)
w(t) = pr(t) — kx(l)

Same phase diagram as discretionary case, except #(t) = 0 locus at
m(t) = —7 < 0 rather than at —r > 0
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Phase 11. Just out of the trap
Admissible dynamics from given z(T), w(T) with i(t) =0 for t € [T,T)

r
-
.

x =0
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Phase 1. During the liquidity trap

At beginning of Phase I x(0), 7(0) free, but x(T"), 7(T") given
ZLB is binding, i(t) = 0

Motion of system given by

i(t) = —o(n(t) + 1)
7(t) = pr(t) — ka(t)

Exact same phase diagram as discretionary case, (t) = 0 locus at
mw(t) = —r > 0 etc. But different terminal conditions

— with discretion x(T), w(T) = (0,0)
— with commitment z(7T), 7(T) given from Phase II.
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Phase 1. During the liquidity trap

Admissible dynamics towards x(T), (1) with i(t) =0 for t € [0,T)

.:X«
+

x=0

jrat
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X = @rT

7t =0

y 7T



Stitching it all together

Dynamics through the entire episode
X
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Summary

(1) If ZLB is not binding, then i(t) = I(r"(¢), 7 (t))

A

(2) I I(r"(t), m(t)) <O for ¢t € [0,T) then i(t) =0 for ¢ € [0, T
for some T' > T

(3) Inflation must be positive at some point
(4) Output must be both positive and negative

(5) Depending on parameters, inflation may be positive throughout
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Numerical example

Suppose 0 =1, k =05and A=1/k =2
This choice of parameters implies ckA = 1 which implies 7w(0) = 0
Obtain trajectory z(t), w(t) for some given x(0)

Optimize over x(0) to find trajectory that minimizes loss
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During the liquidity trap ¢t € [0,7)

r"*(t) = r < 0, ZLB binding i(t) = 0
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During the liquidity trap ¢t € [0,7)

; Commitment vs. discretion
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102

inflation 7 (¢)

r"(t) back to 7 > 0 but still i(t) =0

Just out of the liquidity trap ¢t € |T,T)

(2)z deS yndyno



After the storm has passed t € [T, c0)

r’(t) at ¥ > 0 and now i(t) = I(7, w(t))
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Nominal rate i(t) jumps at T, not T
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For each initial x(0), a different trajectory
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For each initial x(0), a different trajectory
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Tradeoflf between initial recession and volatility
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tial z(0)

11mM1ize over 1111

Opt

102

loss = 0.36

7

loss = 0.46
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Commitment vs. discretion

Paths for z(t), w(¢). Commitment in blue, discretion in black
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Commitment to inflation? Or boom?

e Krugman (1998) and older literature emphasizes importance of
commitment to deliver inflation

e Werning (2012) argues that real goal is to deliver boom
(though optimum generally features some positive inflation)

e Three devices to illustrate this point
(i) completely rigid prices, k = 0
(ii) commitment to exit inflation 7(7") only

(iii) exogenous constraint to avoid inflation

In each case obtains result that commitment to ¢(¢) = 0 after trap
1s over 1s motivated by desire to deliver a boom
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Appendix: details for ‘after the storm’
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Phase III. After the storm

Recall that at beginning of Phase III

A

— initial (T), 7(T) are given (not free)
— ZLB is not binding so i(t) = I(7, 7 (t))

Hence dynamic system given by

t(t) = —kA7(t)
7(t) = pr(t) — ka(t)

Guess z(t) = ¢m(t) for some ¢ to be determined
Hence (t) = ¢ (t) so

kAR (t) = 6 (pr(t) — kgm(1))
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Phase III. After the storm

e Since this must hold for all 7(¢) we have the restriction

q(¢) = k¢ — pp — KA =0

e Solving for the roots of this quadratic

+ \/p? + 4Kk2 )\
¢17 ¢2 — P \/p2li

(one of which is positive, the other negative)

e We want these dynamics to take us towards x(co) = m(o0) = 0, so
we choose the positive solution

+ v/ p? +4K2\
ALY 22
2K K

¢
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