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This class

• Optimal monetary policy in a liquidity trap with commitment

• Further reading

⇧ Werning (2012): Managing a liquidity trap: Monetary and fiscal
policy, MIT working paper, section 4
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Optimal monetary policy with commitment

• Monetary policy minimizes

L =
1

2

Z 1

0
e�⇢t (x(t)2 + �⇡(t)2) dt

subject to the constraints

ẋ(t) = ��1(i(t)� ⇡(t)� rn(t))

⇡̇(t) = ⇢⇡(t)� x(t)

i(t) � 0

taking as given path of natural real rate rn(t)

• Control i, state x,⇡ with free initial conditions x(0),⇡(0)
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Optimal monetary policy with commitment

• Hamiltonian for this problem

H =
1

2
(x2 + �⇡2) + µx(�

�1(i� ⇡ � rn)) + µ⇡(⇢⇡ � x)�  i

with multipliers µx, µ⇡ and multiplier on ZLB constraint  

• Key optimality conditions

µx(t)�
�1 =  (t),  (t)i(t) = 0 with comp. slackness

and

⇢µx(t)� µ̇x(t) = x(t)� µ⇡(t)

⇢µ⇡(t)� µ̇⇡(t) = �⇡(t)� ��1µx(t) + ⇢µ⇡(t)
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Optimal monetary policy with commitment

• Hence system can be written

µx(t) � 0, µx(t)i(t) = 0

with

µ̇x(t) = ⇢µx(t)� x(t) + µ⇡(t)

µ̇⇡(t) = ��⇡(t) + ��1µx(t)

ẋ(t) = ��1(i(t)� ⇡(t)� rn(t))

⇡̇(t) = ⇢⇡(t)� x(t)

taking as given path natural real rate rn(t)

• Boundary conditions: (i) µx(0) = 0 and µ⇡(0) = 0, since both x(0)
and ⇡(0) are free, and (ii) two transversality conditions
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Preliminaries

• Suppose ZLB not binding,  (t) = 0 hence µx(t) = µ̇x(t) = 0 so that

x(t) = µ⇡(t)

• Implies familiar targeting rule, as in Lecture 16 slide 15

ẋ(t) = µ̇⇡(t) = 
⇣
� �⇡(t) + ��10

⌘
= ��⇡(t)

• But from the dynamic IS curve

ẋ(t) = ��1(i(t)� ⇡(t)� r(t))

• Solving for i(t) then gives

i(t) = I(rn(t),⇡(t)), where I(r,⇡) := r + (1� ��)⇡

This is the optimal nominal rate whenever the ZLB is not binding.
I(r,⇡) � 0 is necessary for ZLB to not bind. But not sufficient.
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Approach

• Three phases

I. During the liquidity trap, t 2 [0, T )

II. Just out of the trap, t 2 [T, T̂ ), some endogenous T̂ � T

III. After the storm has passed, t 2 [T̂ ,1)

• Need to ‘stitch together’ three phase diagrams

• Key is whether x(t),⇡(t) are free at critical dates t = 0, T, T̂

• Solve backwards from terminal conditions
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Phase III. After the storm

• At beginning of Phase III x(T̂ ),⇡(T̂ ) are given (not free)

• ZLB is not binding so i(t) = I(r,⇡(t))

• Under this control, motion of system given by

ẋ(t) = ��⇡(t)

⇡̇(t) = ⇢⇡(t)� x(t)

• Solve with method of undetermined coefficients

x(t) = �⇡(t)

for some � to be determined, see appendix for details
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Phase III. After the storm

� is slope of saddle-path through (0, 0) with i(t) = I(r,⇡(t)) for t 2 [T̂ ,1)
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Phase II. Just out of the trap

• At beginning of Phase II x(T ),⇡(T ) are given (not free)

• Liquidity trap is over but i(t) = 0 is still optimal. Policy commits
to keeping i(t) = 0 even after trap is over

• Motion of system given by

ẋ(t) = ���1(⇡(t) + r)

⇡̇(t) = ⇢⇡(t)� x(t)

• Same phase diagram as discretionary case, except ẋ(t) = 0 locus at
⇡(t) = �r < 0 rather than at �r > 0
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Phase II. Just out of the trap

Admissible dynamics from given x(T ),⇡(T ) with i(t) = 0 for t 2 [T, T̂ )
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Phase I. During the liquidity trap

• At beginning of Phase I x(0),⇡(0) free, but x(T ),⇡(T ) given

• ZLB is binding, i(t) = 0

• Motion of system given by

ẋ(t) = ���1(⇡(t) + r)

⇡̇(t) = ⇢⇡(t)� x(t)

• Exact same phase diagram as discretionary case, ẋ(t) = 0 locus at
⇡(t) = �r > 0 etc. But different terminal conditions

– with discretion x(T ),⇡(T ) = (0, 0)
– with commitment x(T ),⇡(T ) given from Phase II.
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Phase I. During the liquidity trap

Admissible dynamics towards x(T ),⇡(T ) with i(t) = 0 for t 2 [0, T )
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Stitching it all together

Dynamics through the entire episode
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Summary

(1) If ZLB is not binding, then i(t) = I(rn(t),⇡(t))

(2) If I(rn(t),⇡(t)) < 0 for t 2 [0, T ) then i(t) = 0 for t 2 [0, T̂ )
for some T̂ � T

(3) Inflation must be positive at some point

(4) Output must be both positive and negative

(5) Depending on parameters, inflation may be positive throughout
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Numerical example

• Suppose � = 1,  = 0.5 and � = 1/ = 2

• This choice of parameters implies �� = 1 which implies ⇡(0) = 0

• Obtain trajectory x(t),⇡(t) for some given x(0)

• Optimize over x(0) to find trajectory that minimizes loss
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During the liquidity trap t 2 [0, T )
rn(t) = r < 0, ZLB binding i(t) = 0
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During the liquidity trap t 2 [0, T )
Commitment vs. discretion
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Just out of the liquidity trap t 2 [T, T̂ )
rn(t) back to r > 0 but still i(t) = 0
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After the storm has passed t 2 [T̂ ,1)
rn(t) at r > 0 and now i(t) = I(r,⇡(t))
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Nominal rate i(t) jumps at T̂ , not T
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For each initial x(0), a different trajectory
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For each initial x(0), a different trajectory
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Tradeoff between initial recession and volatility
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Optimize over initial x(0)
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Commitment vs. discretion

Paths for x(t),⇡(t). Commitment in blue, discretion in black
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Commitment to inflation? Or boom?

• Krugman (1998) and older literature emphasizes importance of
commitment to deliver inflation

• Werning (2012) argues that real goal is to deliver boom
(though optimum generally features some positive inflation)

• Three devices to illustrate this point

(i) completely rigid prices,  = 0
(ii) commitment to exit inflation ⇡(T ) only
(iii) exogenous constraint to avoid inflation

In each case obtains result that commitment to i(t) = 0 after trap
is over is motivated by desire to deliver a boom

27



Appendix: details for ‘after the storm’
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Phase III. After the storm

• Recall that at beginning of Phase III

– initial x(T̂ ),⇡(T̂ ) are given (not free)
– ZLB is not binding so i(t) = I(r,⇡(t))

• Hence dynamic system given by

ẋ(t) = ��⇡(t)

⇡̇(t) = ⇢⇡(t)� x(t)

• Guess x(t) = �⇡(t) for some � to be determined

• Hence ẋ(t) = �⇡̇(t) so

��⇡(t) = �
⇣
⇢⇡(t)� �⇡(t)

⌘
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Phase III. After the storm

• Since this must hold for all ⇡(t) we have the restriction

q(�) = �2 � ⇢�� � = 0

• Solving for the roots of this quadratic

�1,�2 =
⇢±

p
⇢2 + 42�

2

(one of which is positive, the other negative)

• We want these dynamics to take us towards x(1) = ⇡(1) = 0, so
we choose the positive solution

� =
⇢+

p
⇢2 + 42�

2
>
⇢


> 0
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