Advanced Macroeconomics

Lecture 18: monetary economics, part six

Chris Edmond

1st Semester 2019

This class

- Optimal monetary policy in a liquidity trap *with commitment*
- Further reading
 - ◊ Werning (2012): Managing a liquidity trap: Monetary and fiscal policy, MIT working paper, section 4

Optimal monetary policy with commitment

• Monetary policy minimizes

$$L = \frac{1}{2} \int_0^\infty e^{-\rho t} \left(x(t)^2 + \lambda \pi(t)^2 \right) dt$$

subject to the constraints

$$\dot{x}(t) = \sigma^{-1}(i(t) - \pi(t) - r^n(t))$$
$$\dot{\pi}(t) = \rho \pi(t) - \kappa x(t)$$
$$i(t) \ge 0$$

taking as given path of natural real rate $r^n(t)$

• Control *i*, state x, π with free initial conditions $x(0), \pi(0)$

Optimal monetary policy with commitment

• Hamiltonian for this problem

$$\mathcal{H} = \frac{1}{2}(x^2 + \lambda\pi^2) + \mu_x(\sigma^{-1}(i - \pi - r^n)) + \mu_\pi(\rho\pi - \kappa x) - \psi i$$

with multipliers μ_x, μ_π and multiplier on ZLB constraint ψ

• Key optimality conditions

$$\mu_x(t)\sigma^{-1} = \psi(t), \qquad \psi(t)i(t) = 0 \qquad \text{with comp. slackness}$$

and

$$\rho \mu_x(t) - \dot{\mu}_x(t) = x(t) - \kappa \mu_\pi(t)$$

$$\rho \mu_\pi(t) - \dot{\mu}_\pi(t) = \lambda \pi(t) - \sigma^{-1} \mu_x(t) + \rho \mu_\pi(t)$$

Optimal monetary policy with commitment

• Hence system can be written

$$\mu_x(t) \ge 0, \qquad \mu_x(t)i(t) = 0$$

with

$$\dot{\mu}_x(t) = \rho \mu_x(t) - x(t) + \kappa \mu_\pi(t)$$
$$\dot{\mu}_\pi(t) = -\lambda \pi(t) + \sigma^{-1} \mu_x(t)$$
$$\dot{x}(t) = \sigma^{-1}(i(t) - \pi(t) - r^n(t))$$
$$\dot{\pi}(t) = \rho \pi(t) - \kappa x(t)$$

taking as given path natural real rate $r^n(t)$

• Boundary conditions: (i) $\mu_x(0) = 0$ and $\mu_\pi(0) = 0$, since both x(0) and $\pi(0)$ are free, and (ii) two transversality conditions

Preliminaries

- Suppose ZLB not binding, $\psi(t) = 0$ hence $\mu_x(t) = \dot{\mu}_x(t) = 0$ so that $x(t) = \kappa \mu_\pi(t)$
- Implies familiar targeting rule, as in Lecture 16 slide 15

$$\dot{x}(t) = \kappa \dot{\mu}_{\pi}(t) = \kappa \left(-\lambda \pi(t) + \sigma^{-1} 0 \right) = -\kappa \lambda \pi(t)$$

• But from the dynamic IS curve

$$\dot{x}(t) = \sigma^{-1}(i(t) - \pi(t) - r(t))$$

• Solving for i(t) then gives

$$i(t) = I(r^n(t), \pi(t)), \text{ where } I(r, \pi) := r + (1 - \sigma \kappa \lambda)\pi$$

This is the optimal nominal rate whenever the ZLB is not binding. $I(r, \pi) \ge 0$ is necessary for ZLB to not bind. But not sufficient.

Approach

- Three phases
 - **I.** During the liquidity trap, $t \in [0, T)$
 - **II.** Just out of the trap, $t \in [T, \hat{T})$, some endogenous $\hat{T} \ge T$
 - **III.** After the storm has passed, $t \in [\hat{T}, \infty)$
- Need to 'stitch together' three phase diagrams
- Key is whether $x(t), \pi(t)$ are free at critical dates $t = 0, T, \hat{T}$
- Solve backwards from terminal conditions

Phase III. After the storm

- At beginning of Phase III $x(\hat{T}), \pi(\hat{T})$ are given (not free)
- ZLB is not binding so $i(t) = I(\overline{r}, \pi(t))$
- Under this control, motion of system given by

$$\dot{x}(t) = -\kappa\lambda\pi(t)$$
$$\dot{\pi}(t) = \rho\pi(t) - \kappa x(t)$$

• Solve with method of undetermined coefficients

 $x(t) = \phi \pi(t)$

for some ϕ to be determined, see appendix for details

Phase III. After the storm

 ϕ is slope of saddle-path through (0,0) with $i(t)=I(\overline{r},\pi(t))$ for $t\in [\hat{T},\infty)$

Phase II. Just out of the trap

- At beginning of Phase II $x(T), \pi(T)$ are given (not free)
- Liquidity trap is over but i(t) = 0 is *still optimal*. Policy commits to keeping i(t) = 0 even after trap is over
- Motion of system given by

$$\dot{x}(t) = -\sigma^{-1}(\pi(t) + \overline{r})$$
$$\dot{\pi}(t) = \rho\pi(t) - \kappa x(t)$$

• Same phase diagram as discretionary case, except $\dot{x}(t) = 0$ locus at $\pi(t) = -\overline{r} < 0$ rather than at $-\underline{r} > 0$

Phase II. Just out of the trap

Admissible dynamics from given $x(T), \pi(T)$ with i(t) = 0 for $t \in [T, \hat{T})$

Phase I. During the liquidity trap

- At beginning of Phase I $x(0), \pi(0)$ free, but $x(T), \pi(T)$ given
- ZLB is binding, i(t) = 0
- Motion of system given by

$$\dot{x}(t) = -\sigma^{-1}(\pi(t) + \underline{r})$$
$$\dot{\pi}(t) = \rho\pi(t) - \kappa x(t)$$

- Exact same phase diagram as discretionary case, $\dot{x}(t) = 0$ locus at $\pi(t) = -\underline{r} > 0$ etc. But different terminal conditions
 - with discretion $x(T), \pi(T) = (0, 0)$
 - with commitment $x(T), \pi(T)$ given from Phase II.

Phase I. During the liquidity trap

Admissible dynamics towards $x(T), \pi(T)$ with i(t) = 0 for $t \in [0, T)$

Stitching it all together

Summary

- (1) If ZLB is not binding, then $i(t) = I(r^n(t), \pi(t))$
- (2) If $I(r^n(t), \pi(t)) < 0$ for $t \in [0, T)$ then i(t) = 0 for $t \in [0, \hat{T})$ for some $\hat{T} \ge T$
- (3) Inflation must be positive at some point
- (4) Output must be both positive and negative
- (5) Depending on parameters, inflation may be positive throughout

Numerical example

- Suppose $\sigma = 1$, $\kappa = 0.5$ and $\lambda = 1/\kappa = 2$
- This choice of parameters implies $\sigma \kappa \lambda = 1$ which implies $\pi(0) = 0$
- Obtain trajectory $x(t), \pi(t)$ for some given x(0)
- Optimize over x(0) to find trajectory that minimizes loss

During the liquidity trap $t \in [0,T)$

Nominal rate i(t) jumps at \hat{T} , not T

For each initial x(0), a different trajectory

 $\cdot 10^{-2}$

For each initial x(0), a different trajectory

Tradeoff between initial recession and volatility

Optimize over initial x(0)

Commitment vs. discretion

Paths for $x(t), \pi(t)$. Commitment in blue, discretion in black

Commitment to inflation? Or boom?

- Krugman (1998) and older literature emphasizes importance of commitment to deliver *inflation*
- Werning (2012) argues that real goal is to deliver *boom* (though optimum generally features some positive inflation)
- Three devices to illustrate this point
 - (i) completely rigid prices, $\kappa = 0$
 - (ii) commitment to exit inflation $\pi(T)$ only
 - (iii) exogenous constraint to avoid inflation

In each case obtains result that commitment to i(t) = 0 after trap is over is motivated by desire to deliver a boom Appendix: details for 'after the storm'

Phase III. After the storm

• Recall that at beginning of Phase III

– initial
$$x(\hat{T}), \pi(\hat{T})$$
 are given (not free)

- ZLB is not binding so $i(t) = I(\overline{r}, \pi(t))$

• Hence dynamic system given by

$$\dot{x}(t) = -\kappa\lambda\pi(t)$$
$$\dot{\pi}(t) = \rho\pi(t) - \kappa x(t)$$

• Guess $x(t) = \phi \pi(t)$ for some ϕ to be determined

• Hence
$$\dot{x}(t) = \phi \dot{\pi}(t)$$
 so

$$-\kappa\lambda\pi(t) = \phi\Big(\rho\pi(t) - \kappa\phi\pi(t)\Big)$$

Phase III. After the storm

• Since this must hold for all $\pi(t)$ we have the restriction

$$q(\phi) = \kappa \phi^2 - \rho \phi - \kappa \lambda = 0$$

• Solving for the roots of this quadratic

$$\phi_1, \phi_2 = \frac{\rho \pm \sqrt{\rho^2 + 4\kappa^2 \lambda}}{2\kappa}$$

(one of which is positive, the other negative)

• We want these dynamics to take us towards $x(\infty) = \pi(\infty) = 0$, so we choose the positive solution

$$\phi = \frac{\rho + \sqrt{\rho^2 + 4\kappa^2 \lambda}}{2\kappa} > \frac{\rho}{\kappa} > 0$$