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This class

e Permanent shocks in the RBC model

— random walks, stochastic trends etc



Stationary AR(1) process

e Recall stationary AR(1) process
Tty = (1—gb)f—|—gbxt—|—5t+1, 0 < ]gb\ <1

with IID normal innovations ;11 ~ N(O0, Jg )

e Long run distribution

0
£CNN<£E‘, 1_5¢2)

independent of initial condition xg

o What if ¢ = 17



Pure random walk

With ¢ = 1 the AR(1) becomes a random walk

Ti41 = Tt + €41

Iterating forward from initial condition

t
T+ = T + E Eq
1=1

Every single shock realization changes the level of x; one-for-one.
For the random walk, shocks are ‘permanent’

By contrast for the stationary AR(1) shocks are ‘transitory’



Pure random walk

e Distribution at date ¢ is
Ty ~ N(:EO, agt)
e Variance linear in ¢ and dependence on xy does not fade with time

e Does not converge to a limiting distribution as ¢ — oo
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Random walk with drift

® Suppose
Ti41 = B+ Ty T+ €41

e Parameter p is the expected change or drift
Ei|Azqq] = p

e [terating forward from initial condition

t
a:t:ajo—l—,ut—l—zcei
i=1

so that
Ty ~ N(:co—l—,ut, agt)

e Mean and variance both linear in ¢t
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Terminology

The random walk has a ‘“unit root’ ¢ =1
Nonstationary in levels x; but stationary in first differences Axy

A stochastic process is said to be integrated of order d or I(d) if it
takes d differences to make the process stationary

So here x; is I(1) and Az is 1(0)



Another example

Now consider the following AR/(2) process

Tir1 = (1= @Ju+ (1 + @)ar — dxp—1 + €441, 0<o<1

Is this process stationary? What the roots of this process?

Equivalent to system of the form

Tl | l+¢ —9¢ Tt
(3; )_...+< o )(xt1)+...

Process is stationary if ‘system’ has stable dynamics,
i.e., eigenvalues of coeflicient matrix are less than one in magnitude

10



Eigenvalues

Eigenvalues of A given by roots of the characteristic polynomial

For the 2-by-2 case
p(A) = A2 — tr(A)\ + det(A)

For this specific example
tr(A) =1+4+¢ > 1, det(A) = ¢ € (0,1)

Using the quadratic formula, for this example roots evaluate to
A =1, Ao = ¢

Hence this is also a ‘unit root process’ and is nonstationary
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AR(1) in differences

e In fact this process is simply a stationary AR(1) in differences
A$t+1 = (1—¢)M+¢A$t—|—€t+1, O<¢< 1

e Since Axy is I(0) the process in levels is I(1)

e Unlike the random walk, this process implies time-variation in
expected growth

Et|Aziia] = (1 — @)p + pAw

with reversion to long-run average growth u governed by ¢
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Azppr = (1 — @)+ ¢Axy + €441

1.4 -

1.2

o =0, u=0.02, p =0.5 and € ~ N(0,02) with 0. = 0.015.
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Cointegration

A scalar x; is I(1) if Axy is stationary, I(0)

A vector of I(1) variables a; is cointegrated if there is a linear
combination a’x; that is I(0)

For example, if x; and y; are both I(1) and ax; + by is 1(0)
then x; and y; are cointegrated

Implies that there is a stable long-run relationship between x; and
y; even if both nonstationary

Deviations from ax; + by; are mean-reverting, leads to ‘error
correction’ representation
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Stochastic growth

What happens if we use nonstationary processes like this to drive
the stochastic growth model?

Suppose standard aggregate production function, in levels
Yy = F(Ky, AL

Labor-augmenting productivity A; is stationary in growth rates

_ A
gt—At_l

Constant employment L > 0 for simplicity
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Stochastic growth

e Social planner maximizes expected intertemportal utility

1l—0

10_
{Zﬁt (Ci/L) 1}, 0<B<1, o>0

subject to sequence of resource constraints, for each date and state

Cy + Kt_|_1 = F(Kt, AtL) + (1 — 5)Kt, 0<odo<1

e Initial Ky > 0 and stochastic process for productivity {A4;} given

e [soelastic utility needed for balanced growth

16



Intensive form

e In efficiency units

Y; Ct Kt
Ct = 7 ki =
AL A1 L

e Note capital K; divided by lagged productivity A; 4

e This implies that detrended k; remains ‘predetermined’
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Detrending

e Resource constraint
Cy + Kyv1 = F(Ky, AsL) + (1 — ) K,
e Dividing through by A; and using g, = A;/A;_1 gives

ct + ki1 = f(ke/ge)+ (1 —=0)(ke/gt)

where f(-) denotes the intensive form of the production function

e Period utility

(Cy/L)'7 =1 (A7 =1

1l—0 l—0

If log utility, ¢ — 1, period utility is separable in ¢; and Ay
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Social planner’s problem

e Lagrangian with stochastic multiplier A\; > 0 for each constraint

L:]EO{Zﬁt () ‘1‘2)\15 (ke/ge) + (1 —5)(kt/gt)—6t—kt+1]}

t=0

e Some key first order conditions

Ct Bt O‘Al o )\t — 0
kv s =AM+ Ee{ M [f (ke /9e41) /9e41 + (1= 6) /gea] } =0

At f(ke/gt) + (1 —=06)(ke/gt) —ct — kg1 =0

e Although k;1q has a t + 1 subscript, it is chosen conditional on
date t information
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Dynamical system

e Gives a system of stationary stochastic difference equations

c; 7 = BE; {Ct_—l—algthzla [f/(kt+1/gt+1)/gt+1 + (1 — 5)/9t+1]}

and

ct + ki1 = f(ki/ge) + (1 —0)(ki/ge)

given initial kg > 0 and transversality condition
e Maps stationary exogenous {g;} into stationary endogenous {c, k: }

e The term (3 gtl;f in consumption Euler equation is a

growth-adjusted discount factor
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“Non-stochastic steady state”

Shut down shocks, set g; = g
Find steady state of associated deterministic model

Steady state capital k solves

1=8g57|f(k/g)+1—0]

Steady state consumption ¢ pinned down by resource constraint

c=f(k/g)+(1—0)(k/g) —k
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Log-linear solution

e Log-linearize the system around these steady state values

]%t = log(kt/l_g)v ét = log(ct/é)a @t = log(gt/g)

e Stationary solution for detrended endogenous variables

]Aft+1 = Tﬂkkiﬂt + Vrg gt

and

Ct = wck]%t + wcgﬁt

given exogenous stationary process for g;
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Nonstationary variables
Log-level of productivity

t
log Ay = log Ag + Z log g;
i=1

Log-levels consumption per worker, capital per worker etc

log(Cy/L) =log ¢ + log Ay
log(K¢/L) = log k¢ + log Ay — log g,
log(Y;/L) = logy; + log Ay

Each is the sum of a stationary component (from the solution of
the detrended model) and a common nonstationary component

Share a common stochastic trend, namely log A;
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Cointegration in the growth model

e Log levels of consumption per worker, capital per worker, output
per worker etc are all I(1) because of productivity

e Log consumption/output ratio, capital /output ratio etc are I(0).
Consumption and output cointegrated, as are capital and output

log(C:/Y;) = log ey — logyy

log(K¢/Y:) = log ky — logy; — log g

(everything on right hand side is stationary)

e Stable long-run relationships between C%, Y; and between K3, Y;.
Deviations from these long-run relationships are mean-reverting
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Parameterization

CRRA utility function |already imposed for balanced growth)|

u(c) = : o> 0

AR(1) process for log productivity growth

log gr+1 = (1 — ¢)log g + ¢ log g + €141, 0<op<1

with long-run average growth log g and I1ID normal innovations
Et4+1 ~ N(0,0’?)

For examples, let 0 =1 and a = 0.3, 5 = 0.95, and d = 0.05
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Example: pure random walk

e Let ¢ =0 with g = 1.00 and 0. = 0.015
e No growth but shocks have permanent effect on levels

e Dynare gives coefficients

(0 5 ) = (038 “oms)
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Detrended variables are mean-reverting
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Impulse response functions of detrended variables ¢; and l%t to 1 standard deviation
shock when log productivity is a pure random walk.
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But shocks have permanent effect on levels
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Impulse response functions of levels log C; and log K; to 1 standard deviation shock
when log A; is a pure random walk.
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Example: random walk with drift

e Let ¢ =0 with g =1.02 and 0. = 0.015
e Expected growth 2% no matter what current g; is

e Dynare now gives coefficients

(0 ) = (051 o)
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Stationary variables
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Simulated time series for detrended variables é and k; when log productivity is a
random walk with drift.
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Nonstationary variables
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Simulated time series for levels log C; and log K; when log A; is a random walk with
drift. Levels nonstationary but ratios log(C:/Y:) and log(K:/Y:) are stationary.
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Example: AR(1) in growth rates

e Let » = 0.5 with g = 1.02 and 0. = 0.015
e Expected growth is time-varying, fluctuates around 2%

e Dynare now gives coefficients

(o w2 )= (st Zoms)
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Stationary variables
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Impulse response functions of detrended variables ¢; and k. to 1 standard deviation
shock when log productivity growth is an AR(1).
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Nonstationary variables
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Simulated time series for levels log C; and log K; when log productivity growth is an
AR(1). Low-frequency fluctuations in stationary ratios more pronounced.
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Next class

e Beginning of lectures on monetary economics
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